Расы и штаммы хлебопекарных дрожжей. Пивные дрожжи

При изготовлении любого современного вина обязательно используются винные дрожжи. Они в процессе своего развития проходят такие стадии:

  1. Лаг-стадия. Она начинается с того момента, когда дрожжевые крупинки попадают в сусло – в питательную среду. Клетки начинают приспосабливаться к субстрату. Они увеличиваются в размерах, но при этом процесса размножения ещё нет;
  2. Вторую стадию называют логарифмической. Во время неё увеличивается популяция клеток, и биомасса становится больше. Клетки стойко выносят все отрицательные факторы внешней среды. Начинается брожение спирта;
  3. Третью стадию называют стационарной. Дрожжевые клетки прекращают расти, а спиртовое брожение происходит с интенсивной силой;
  4. Четвёртая стадия заключается в затухании роста клеток дрожжевой массы. Масса начинает уменьшаться в размерах благодаря интенсивному автолизу и использованию дрожжами резервных веществ.

Пройдя все четыре стадии, дрожжевая масса сделает любое вино вкусным и ароматным.

Всё об винных дрожжах

В природе дрожжи образовываются на поверхности ягод, например, на винограде. Их можно легко заметить, так как они обладают светлым налётом на кожуре ягодок. Налёт образовывается из-за работы дрожжевого грибка.

Пекарские, спиртовые, пивные и винные дрожжевые крупинки относят к производственным дрожжам. Учитывая место происхождения, сорт винограда и местонахождение виноградных плантаций каждому виду дрожжей присваивается своё имя. Дрожжевые расы в свою очередь можно разделить на группы. Вследствие этого расы винных дрожжей бывают:

  1. Высоковыбраживающими;
  2. Термоустойчивыми или холодостойкими;
  3. Спиртоустойчивыми;
  4. Хересными.

Спиртоустойчивые расы дрожжей применяются для изготовления шампанского, а хересные для придания винам неповторимого аромата и вкуса.

Вино обычно делают из сока винограда или других видов плодов и ягод.

Если происходит кустарное виноделие, сусло (отжатый сок) начинает бродить без помощи дрожжей, так как начинают интенсивно размножатся дрожжевые грибки, которые имеются на поверхности самих ягод. Одновременно с ними в силу вступают молочнокислые, уксуснокислые бактерии, дрожжеподобные грибы, которые могут привести к порче продукта, ну или получению винного уксуса вместо вина.

По этой причине вовремя промышленного производства вина, чтобы избежать порчи виноматериалов в виноградный сок добавляется активированная смесь винных дрожжей.

Тип вина зависит от того, каким образом происходит брожение. Благодаря винным дрожжам начинает бродить сахар, который входит в состав винограда. Брожение длится до тех пор, пока весь сахар не преобразуется.

При нехватке кислорода благодаря влиянию дрожжей получается спирт. Если кислород постоянно поступает, полностью окисляется сахар и получается вода с углекислым газом.

При первичных этапах развития дрожжей, брожение происходит интенсивно, из-за этого углекислый газ, который выделяется, не даёт проникать атмосферному кислороду к поверхности сусла. Когда брожение закончится, бочку с вином важно хорошо запечатать. Если этого не сделать, уксуснокислые бактерии превратят спирт в уксусную кислоту. Вместо вина вы станете обладателем винного или яблочного уксуса.

В промышленном производстве вин используется виноградный сок с содержанием 25 процентов сахара.

Чтобы получить белые вина, виноград очищается от кожуры и косточек. Для красных вин, кожуру и косточки не удаляют. Дрожжи для вина вместе с сахаром при брожении сок перерабатывают в спирт. Дрожжевые вещества придают вину ароматность и приятный вкус. После брожения для придания напитку запаха большую роль играют молочнокислые бактерии.

Разные разновидности вин имеют свои особенности производства. Например, чтобы получить шампанское, перебродившее вино нужно сбродить повторно. Брожение напитка должно закончиться в закрытой ёмкости, так как должна накопиться внутри углекислота.

Чтобы получить крепкое вино (херес), нужно воспользоваться специальными хересными дрожжами, которые стойкие к высокой концентрации спирта в виноматериале.

Разновидности вин

Вина бывают сухими, сладкими и креплёными. Чтобы получить сухое вино, важно брожение остановить сразу же после окончания запаса сахара в выдавленном виноградном соке.

Сладкие вина получают путём частичного сброжения сахара, когда достигается токсичный уровень спирта для винных дрожжей.

Креплёные вина дополнительно заливаются спиртом.

Из вышеописанного можно сделать вывод, что вид вина напрямую зависит от того, каким способом его производят, а также какой вид винных дрожжей используется для брожения сока.

Какие бывают дрожжи

Существует много различных видов винных дрожжей. Например, дрожжи для вина Lalvin KV-1118, Lalvin EC-1118 и другие. Давайте подробнее рассмотрим инструкцию по применению каждого вида дрожжей.

Первый вид

Винные дрожжи Lalvin KV-1118 являются чистым высокоактивным дрожжевым концентратом, который применятся для изготовления лёгких белых вин, красных вин и шампанского. Также с помощью таких дрожжей можно восстановить брожение.

Дрожжевую массу принято применять при низкой концентрации, низких температурах, низкому содержанию жирных кислот. Они отлично справляются со своей миссией в температурном режиме 10 – 35 градусов. Если в виноматериал добавить подпитку при температуре ниже 16 градусов, начнут вырабатывать сложные эфиры, которые придадут напитку насыщенный аромат. Благодаря выраженному киллер-эффекту, дрожжевые крупинки хорошо подавляют «дикую» микрофлору.

Инструкция по применению такого продукта говорит следующее:

  1. Применяются дрожжи со штампом KV для выражения виноградного аромата в белых, розовых и насыщенно красных винах;
  2. Учитывая тип и чистоту сырья, условия и длительность ферментации определяется нужная дозировка. Обычно она составляет от 1 до 4 г/дал;
  3. В их состав не входят никакие добавки. Они имеют влажность 6 процентов;
  4. Винные дрожжи (5 грамм) разводят в воде (50 миллилитров) 34 – 39 градусов. Чтобы они заработали нужным образом важно, чтобы вода была температуры не более 40 градусов. Затем смесь нужно хорошо перемешать, чтобы разбить комочки и выдержать не более двадцати минут. Спустя время снова перемешайте, и медленной струйкой введите в сусло. Медленное введение помогает дрожжам постепенно акклиматизироваться и не погибнуть при соединении с прохладным суслом;
  5. Хранить дрожжи для вина можно в тёмном сухом месте до пары лет. Температура хранения должна быть от пяти до пятнадцати градусов. Если вы открыли упаковку, срок годности у неё не больше полугода.

Второй вид

Винная дрожжевая масса Lalvin EC придаёт красным и белым винам освежающий вкус и чистоту. Они хорошо бродят даже при самых низких температурах, образуя осадок в одном месте. Благодаря такому виду сырья можно повторно запустить брожение. Его рекомендуется использовать для , а также из калины, боярышника и вишни. Продукт с пометкой EC обладает низким пенообразованием, хорошо осветляет вино и компактно собирает осадок. Инструкция по применению дрожжей со штампом EC говорит следующее:

  1. 300 грамм содержимого пакетика нужно высыпать в пять литров сорокаградусной воды. Тщательно размешайте до однородности;
  2. Когда температура смеси станет 35 градусов, аккуратно высыпьте 250 грамм дрожжей на поверхность. Дайте постоять 20 минут и хорошенько перемешайте. Затем полученную массу вылейте в сусло, таким образом, чтобы перепад температур был не выше десяти градусов;
  3. Хранить их можно в закрытой упаковке при температуре не больше восьми градусов тепла.

Приготовить вино из винограда не очень трудно. Важно только приобрести правильные дрожжи и внимательно изучить, что говорит инструкция. На ней обычно всё подробно написано.

Теперь вы знаете, что собой представляют дрожжи для вина. Каких они бывают видов. Как можно получить различные виды вин, используя разные виды изготовления. Любители виноделы всегда гордятся своими творениями, особенно если они нравятся окружающим людям.

…ного броже­ния выделяются на поверхности сбраживаемой среды в виде довольно толстого слоя пены и остаются в таком состоянии до окончания брожения. Затем они оседают, но редко дают плот­ный осадок на дне бродильного сосуда. Дрожжи верхового брожения по своей структуре принадлежат к пылевидным дрож­жам, не склеивающимся друг с другом в отличие от хлопьевид­ных дрожжей низового брожения, оболочки которых являются клейкими, что приводит к агглютинации и быстрому осаждению клеток.

Дрожжи низового брожения, развиваясь в сбраживаемой жидкости, не переходят в поверхностный слой – пену, быстро оседают по окончании брожения, образуя плотный слой на дне бродильного сосуда.

Отличительным признаком является способность дрожжей низового брожения полностью сбраживать рафинозу, тогда как большинство дрожжей верхового брожения рафинозу совершен­но не расщепляет, и лишь некоторые виды могут сбраживать ее только на одну треть. Это основное различие объясняется тем, что в ферментном комплексе названного типа дрожжей содер­жится α-галактозидаза.

Из культурных дрожжей к дрожжам низового брожения от­носится большинство винных и пивных дрожжей, а к дрожжам верхового брожения – спиртовые, хлебопекарные и некоторые расы пивных дрожжей. Первоначально были известны только дрожжи верхового брожения, так как брожение всяких соков происходило при обычной температуре. Желая получить напит­ки, насыщенные СО 2 , человек стал вести брожение при низкой температуре. Под влиянием изменившихся внешних условий по­лучились дрожжи низового брожения с их свойствами, получив­шие широкое распространение.

Кроме общих свойств, дрожжи, используемые в том или ином производстве, обладают специфическими показателями. Более того, в одном и том же производстве применяются разновидно­сти, различающиеся одной или несколькими особенностями. Их выводят из одной клетки. Такие культуры называют расами (штаммами). Каждое производство располагает несколькими расами дрожжей.

Расы дрожжей спиртового производства

В спиртовом произ­водстве применяются те расы дрожжей верхового брожения, ко­торые обладают наибольшей энергией брожения, образуют мак­симум спирта и сбраживают моно- и дисахариды, а также часть декстринов. Из дрожжей, применяемых при получении спирта из хлебно-картофельного сырья, следует назвать расы ХП, М и ХV.

При переработке мелассы на спирт применяют расы Я, Л, В, Г-67, Г-73. Эти расы относятся к семейству Saccharomyces taceae, роду Saccharomyces, виду cerevisiae.

Раса ХП выделена в 1902 году из хлебопекарных прессованных дрожжей. Клетки дрожжей этой расы круглые ияйцевидные размерами 5-6,2 х 5-8 мкм.

Развитие и размножение дрож­жей расы ХП идет очень быстро. Они сбраживают глюкозу, фруктозу, сахарозу, галактозу, мальтозу, маннозу, рафинозу на одну треть и могут образовывать в сбраживаемой среде до 13%об спирта.

Раса М (Mischung – смесь), предложенная Геннебергом в 1905 году, состоит из смеси четырех рас дрожжей верхового бро­жения; она предназначена для сбраживания сред, содержащих смесь различных сахаров (декстринов, рафинозы), которые не­одинаково сбраживаются различными дрожжами. Такая смешанная культура очень устойчива против различных ненормаль­ных условий, встречающихся в заводской практике.

Раса ХV по технологическим признакам сходна с расой ХП. Ее применяют наряду с расой ХП для сбраживания смешанного зерно-мелассного сырья.

Из названных рас наиболее пригодной для сбраживания сусла из крахмалистого сырья является раса ХП, которая приме­няется также в гидролизном и сульфитноспиртовом производ­ствах. Правда, для сбраживания сульфитных щелоков выведены специально сульфитные дрожжи, сбраживающие глюкозу, фрук­тозу, галактозу и маннозу.

Дрожжи, применяемые на спиртовых заводах, перерабаты­вающих мелассу, должны обладать специфической способностью быстро сбраживать довольно концентрированные сахарные рас­творы и хорошо переносить высокое содержание солей в среде. Сбраживать же растворы, содержащие большие концентрации сахара, могут так называемые осмофильные дрожжи, которые выносят очень высокое осмотическое давление.

К таким дрож­жам относится раса Я, выведенная из мелассных дрожжей К.Ю. Якубовским. Раса Я обладает исключительной способностью сбраживать вы­сокие концентрации сахара и хорошо переносит высокое содер­жание солей и спирта в сбраживаемом мелассном сусле. Дрож­жи расы Я сбраживают глюкозу, фруктозу, сахарозу, галактозу, мальтозу; рафинозу сбраживают только частично и совершенно не сбраживают декстрины и лактозу. Раса Я относится к пыле­видным дрожжам верхового брожения.

Дрожжи расы Л (Лохвицкая) близки по своим свойствам к дрожжам расы Я, но они несколько лучше размножаются и более полно сбраживают сахар.

Раса В (венгерская) подобно расе Л приспособлена к мелассной среде. Эти расы хорошо сбраживают сахарозу, глюкозу, фруктозу, а рафинозу частично.

Дрожжи рас Л и В наряду с высокими бродильными свойствами обладают также хорошей подъемной силой (способностью поднимать тесто), что позволяет выделять их из бражки и выпускать в прессованном виде в качестве хле­бопекарных.

Успешное применение находят гибридные дрожжи, выведен­ные в Институте генетики АН СССР путем скрещивания двух видов дрожжей. Среди гибридов наибольший интерес представляют Г-67, Г-73. Гибрид 67 получен скрещиванием пивных дрож­жей S-carlsbergensis с S.cerevisiae расы Я. Дальнейшее скрещи­вание гибрида 67 с гибридом 26 (полученным от скрещивания рас Я и ХП) дало гибрид 73. Гибриды 67 и 73 наряду с дру­гими ферментами содержат α-галактозидазу и обладают способ­ностью к полному сбраживанию рафинозы. Рекомендованы к применению и другие гибридные дрожжи.

Расы хлебопекарных дрожжей

В дрожжевом производстве ценятся быстро размножающиеся расы дрожжей, обладающие хорошей подъемной силой и хорошей стойкостью при хранении. Вкус хлебопекарных дрожжей должен быть чистый, цвет белый или желтоватый. Подъемная сила определяется как особенно­стями рас дрожжей, так и способом ведения производства. Стойкость дрожжей является свойством расы, но зависит от внутреннего состояния клеток и чистоты дрожжей.

При производстве хлебопекарных дрожжей из мелассы при­меняются расы VII, 14, 28 и Г-176.

Раса VII, выведенная из прессованных товарных дрожжей Томского дрожжевого завода, быстро размножается и хорошо отпрессовывается до влажности 71-72%. Дрожжи расы VII обладают хорошей подъемной силой и наибольшей стойкостью при хранении по сравнению с други­ми известными в заводской практике. Кроме того, эта культура является устойчивой к вредным примесям, содержащимся в ме­лассе.

Раса 14 предназначена для произ­водства сухих дрожжей. Эти дрожжи отличаются плотной консистенцией при влажности 75%, высокой термоустойчи­востью.

Из гибридов хлебопекарных дрожжей отобран гибрид 176, обладающий всеми положительными признаками: крупными клетками (5,6-14,0 мкм), устойчивостью к вредным примесям мелассы и высо­ким коэффициентом размножения, который у этой расы выше, чем у наиболее быстро размножающейся расы 14. В настоящее время проходят производственные испытания и другие перспек­тивные гибридные расы дрожжей.

Расы пивных дрожжей

В пивоварении используют дрожжи низового брожения, приспособленные к сравнительно низким температурам. Пивные дрожжи должны быть микробиологиче­ски чистые, а также обладать способностью к хлопьеобразованию, быстро оседать на дно бродильного аппарата и давать прозрачный напиток с определенными вкусом и ароматом. К сильносбраживающим и легко дающим хлопья относятся пив­ные дрожжи низового брожения Фроберг (Saccharomyces cere­visiae Froberg), дрожжи рас V и 776.

На пивоваренных заводах большое распространение получили дрожжи расы 776, которая была выведена в начале XX в. Эти дрожжи считаются пригод­ными особенно для сбраживания сусла, приготовленного с добав­кой несоложеных материалов или из солода, полученного солодованием ячменей с невысокой степенью прорастаемости. Дрожжи расы 776 –среднесбраживающие, за период главного брожения на сусле концентрацией 11% образуют примерно 2,7% СО 2 . Клетки яйцевидной формы, длиной 8-10 мкм и ши­риной 5-6 мкм. Прирост дрожжевой массы 1: 5,4. Способность к осветлению удовлетворительная.

Из других дрожжей на пивоваренных заводах применяются расы 11, 41, 44, S-Львовская и др, различающиеся по бродиль­ной энергии, способности к осаждению и энергии роста.

Дрожжи расы 11 – сильносбраживающие, с хорошей способ­ностью к осветлению. Пиво, полученное с применением дрожжей расы 11, имеет хороший вкус. Эта раса получила широкое рас­пространение на пивоваренных заводах.

Дрожжи расы 41 – среднесбраживающие, с хорошей способ­ностью к осаждению. При сбраживании сусла расой 41 получа­ется мягкое пиво с чистым вкусом.

Дрожжи расы 44 – среднесбраживающие. Способность к осаждению хорошая. Сообщают пиву полноту вкуса и дают хорошие результаты при применении в производстве воды с по­вышенной жесткостью.

Дрожжи расы S – среднесбраживающие. Способность к осаждению хорошая. Дают пиво с мягким чистым вкусом.

Дрожжи расы Р – среднесбра­живающие, хорошо осветляют пиво и обусловливают приятный чистый вкус.

Дрожжи расы F характеризуются хо­рошей способностью к осветлению и сообщают пиву приятный аромат. Раса устойчива к действию посторонних микроорга­низмов.

Дрожжи расы А (выделены на рижском пивоваренном заво­де «Алдарис») сбраживают сусло за 7-8 суток, хорошо осветля­ют пиво и устойчивы к инфекции.

Путем разных способов селекции во ВНИИ пивобезалко­гольной промышленности получен ряд сильносбраживающих штаммов дрожжей (28, 48, 102), обладающих значительно боль­шей бродильной энергией, чем дрожжи исходной расы 11.

Пивные дрожжи верхового брожения находят широкое при­менение в Англии при приготовлении Портера. Они применяют­ся также для приготовления Берлинского светлого пива и дру­гих напитков. Для приготовления Бархатного пива применяют штамм 191 К, интенсивно сбраживающий моносахариды и маль­тозу, но не сбраживающий сахарозу, рафинозу и лактозу.

Расы винных дрожжей

В виноделии ценятся дрожжи, быст­ро размножающиеся, обладающие свойством подавлять другие виды дрожжей и микроорганизмы и придавать вину соответст­вующий букет. Дрожжи, применяемые в виноделии, относятся к своеобразному виду Saccharomyces ellipsoideus. Клетки их имеют продолговато-овальную форму. Дрожжи энергично сбра­живают глюкозу, фруктозу, сахарозу и мальтозу. В различных местностях и из различных молодых вин выделено несколько отличающихся одна от другой разновидностей или рас этого вида. В виноделии почти все производственные культуры дрож­жей – своего, местного происхождения. К их числу относятся расы Магарач 7, Массандра 3, Пино 14, Кахури и многие другие. Наряду с этими расами применяются и некоторые иностранные, например раса Штейнберг, выделенная в Германии в 1892 и 1893 гг., и раса Шампань-Аи.

Большая часть винных дрожжей относится к дрожжам низо­вого брожения.

Для приготовления белых столовых вин применяются расы Пино 14, Феодосия 1/19, Алиготе, Рислинг Анапский.

Раса Пино 14 имеет клетки яйцевидной формы, хорошо сбра­живает виноградное сусло сахаристостью 20 % с образованием 11,57%об спирта; оптимальная температура развития и бро­жения 18: -25°С. Эта раса является холодостойкой и кислото­стойкой; оптимальная величина рН 2,9-3,9.

Раса Феодосия 1/19 – крупноклеточная, пылевидная, очень энергичная, быстро сбраживает виноградное сусло и хорошо дображивает его; имеет широкий температурный диапазон бро­жения (от 9 до 35°С) и может применяться как холодостойкая и как термостойкая.

Дрожжей Алиготе имеется несколько рас, и все они сильные, с высокой энергией брожения. К энергично сбраживающим от­носятся и дрожжи Рислинг Анапский.

Для приготовления крепких вин применяется раса Массанд­ра 3 с яйцевидной формой клеток, пылевидная; оптимальная величина рН 3,7-4,05; оптимальная температура брожения 18-20°С. Виноградное сусло с содержанием сахара 20% сбраживается полностью; при сбраживании концентрированного виноградного сусла (30% сахара) образует 11,8%об спирта и оставляет несброженным 8,7% сахара.

Раса Магарач 125, названная в ознаменование 125-летнего юбилея первых посадок винограда в институте «Магарач», при­меняется для получения крепких и десертных вин. Эта раса хо­рошо сбраживает высококонцентрированные виноградные сусла с содержанием сахара 27-30%, холодостойкая.

Раса Кахури 2 широко применяется для приготовления шам­панских виноматериалов и вин. Виноградное сусло с содержанием сахара 20% она сбраживает с образованием 11,4%об спирта, оста­ется несброженным 0,28% сахара. Эта раса довольно холодо­стойкая (при температуре 14-15°С сусло забраживает на 2-й день) и сбраживает хорошо; оптимальная величина рН 3,4-3,6.

Раса Шампанская 7, применяемая для шампанизации вина в бутылках, выделена из расы Кахури 5 и характеризуется об­разованием трудно взмучивающегося осадка; интенсивно сбра­живает при температуре 4-9°С, хотя сусло и забраживает только на 5-6-й день.

Из винных дрожжей наиболее холодостойкой считается раса Ленинградская, а наиболее термостойкой – раса Ашхабадская 3.

В производстве хереса применяются специальные расы дрож­жей, которые являются разновидностью вида Saccharomyces oviformis. Хересные дрожжи образуют на поверхности вина в неполных бочках пленку, благодаря развитию которой вино приобретает особые букет и вкус.

Путем тщательного отбора по наиболее важным производст­венным признакам выделено несколько рас хересных дрожжей (13, 15 и 20) с высокой пленкообразующей способностью. В дальнейшем из производства, применявшего расу Херес 20, была отселекционирована более эффективная раса Херес 20-С, которая нашла широкое применение на многих заводах по про­изводству хереса.

В плодово-ягодном виноделии применяются селекционирован­ные расы дрожжей, выделенные из различных плодово-ягодных соков. Плодово-ягодные соки богаты дрожжами, обладающими всеми необходимыми для производства качествами и биологи­чески приспособленными к условиям развития в исходных пло­дово-ягодных соках. Поэтому штаммы дрожжей, выделенных из земляничных соков, применяются для сбраживания земляничных соков, а штаммы дрожжей, выделенных из вишневых соков, при­меняются для сбраживания вишневых соков и т. д.

В плодово-ягодном виноделии получили распространение следующие штаммы: яблочные 46, 58, клюквенный 17, смородиновый 16, брусничные 3, 7, 10, малино­вые 7/5, 25, 28, 28/10, вишневые 3, 6, земляничные 7, 4, 9.

Назван­ные штаммы дрожжей обеспечивают нормальный ход брожения, полноту сбраживания, быструю осветляемость и хорошие вкусо­вые качества вина; они сбраживают глюкозу, фруктозу, сахаро­зу, мальтозу, галактозу и не сбраживают лактозу и маннит.

Успешно применяются в плодово-ягодном виноделии расы дрожжей Москва 30, Яблочная 7, Вишневая 33, Черносмородиновая 7, Малиновая 10 и Сливовая 21. Чистая культура дрожжей Москва 30 рекомендуется для сбраживания клюквенного сусла; Яблочная 7 и Вишневая 33 – для сбраживания яблочного сус­ла; Черносмородиновая 7 и Вишневая 33 – для сбраживания черносмородинового и вишневого сусла.

4 Химизм спиртового брожения. Вторичные и побочные продукты спиртового брожения

Спиртовое брожение представляет собой цепь ферментатив­ных процессов, конечным результатом которых является распад гексозы с образованием спирта и СО 2 и доставка дрожжевой клетке той энергии, которая необходима для образования новых веществ, используемых для процессов жизнедеятельности, в том числе для роста и размножения. По химическому характеру спир­товое брожение – каталитический процесс, происходящий под действием биологических катализаторов – ферментов.

Современная теория спиртового брожения является резуль­татом работ многих ученых различных стран мира.

Для выяснения процессов брожения большое значение имели работы выдающихся отечественных ученых: Лебедева, Костычева, Фаворского, Иванова, Энгельгардта.

По современным представлениям, спиртвое брожение – это сложный непрерывный процесс распада сахара, катализируемый разными ферментами с образованием 12 промежуточных продуктов.

1 Начальной стадией превращения глюкозы является ре­акция фосфорилирования ее при участии фермента глюкозиназы. К молекуле глюкозы присоединяется фосфатный остаток от молекулы АТФ, которая находится в клетках дрож­жей, и образуется глюкозо-6-фосфат, а АТФ превращается в АДФ:

С 6 Н 12 О 6 + АТФ → СН 2 О(Н 2 РО 3)(СНОН) 4 СНО+АДФ

Глюкоза Глюкозо-6-фосфат

В результате присоединения фосфатного остатка от молеку­лы АТФ к глюкозе реакционная способность последней возра­стает.

2 Глюкозо-6-фосфат путем изомеризации под действием фермента глюкозофосфатизомеразы переходит обрати­мо в форму фруктозы:

СН 2 О(Н 2 РО 3)(СНОН) 4 СНО → СН 2 О(Н 2 РО 3)(СНОН) 3 СОСН 2 ОН

Глюкозо-6-фосфат Фруктозо-6-фосфат

СН 2 О(Н 2 РО 3)(СНОН)3СОСН 2 ОН + АТФ →

Фруктозо-6-фосфат

→ СН 2 О(Н 2 РО 3)(СНОН) 3 СОСН 2 О(Н 2 РО) + АДФ

Фруктозо-1,6-дифосфат

Эфиры глюкозо-6-фосфат и фруктозо-6-фосфат образуют равновесную смесь, получившую название эфира Эмдена и со­стоящую на 70-75% из эфира Робисона (глюкозы) и на 25% из эфира Нейберга (фруктозы).

Образованием фруктозо-1,6-дифосфата заканчивается подготовительная стадия спиртового брожения с переносом макроэргических фосфатных связей и с преобразованием гексозы в лабильную оксиформу, легко подвергающуюся дальнейшим фер­ментативным превращениям.

4 Следующим важнейшим этапом является десмолиз – разрыв углеродной цепи фруктозодифосфата с образованием двух
молекул фосфотриоз. Симметричное расположение остатков фосфорной кислоты по концам молекулы фруктозы облегчает разрыв ее углеродной цепи как раз в середине. Фруктозодифосфат распадается при этом на две триозы: фосфоглицериновый альдегид и фосфодиоксиацетон. Реакция катализируется фер­ментом альдолазой и обратима:

СН 2 О(Н 2 РО 3)(СНОН) 3 СОСН 2 О(Н 2 РО) → CH 2 О(Н 2 Р0 3)СОСН 2 ОН +

Фруктозо-1,6-дифосфат Фосфодиоксиацетон

СН 2 0 (Н 2 РОз) СНОНСНО (4)

З-фосфоглицериновый альдегид

Главная роль в дальнейших превращениях при спиртовом брожении принадлежит 3-фосфоглицериновому альдегиду, но в сбраживаемой жидкости он обнаруживается лишь в незначи­тельном количестве. Это объясняется взаимным переходом ке-тозного изомера в альдозный и обратно под действием фермента триозофосфатизомеразы (5.3.1.1)

СН 2 0 (Н 2 Р0 3) СОСН 2 ОН;£ СН 2 0 (Н 2 Р0 3) СНОНСНО

Фосфодиоксиацетон З-фосфоглицериновый альдегид

По мере дальнейшего превращения фосфоглицеринового аль­дегида новые количества его образуются в процессе изомериза­ции фосфодиоксиацетона.

5. Последующим этапом является окисление двух молекул З^фосфоглицеринового альдегида. Эта реакция катализируется триозофосфатдегидрогеназой (1.2.1.12), коферментом которой яв­ляется НАД (никотинамид-аденин-динуклеотид). В окислении участвует фосфорная кислота среды. Реакция протекает по сле­дующему уравнению: 2СН 2 0 (Н 2 Р0 3) СНОНСНО + 2Н 3 Р0 4 + 2НАД Триозофосфатдегидрогеназа ->

З-фосфоглицериновый альдегид

->- 2СН 2 0 (Н 2 Р0 3) СНОНСОО w (H 2 P0 3) + 2НАД

1,3-дифосфоглицериновая йислота

Молекула 3-фосфоглицеринового альдегида присоединяет фосфат, а водород переносится на кофермент НАД, который восстанавливается. Энергия, освобождающаяся в результате окисления 3-фосфоглицеринового альдегида, аккумулируется в макроэргической связи образующейся 1,3-дифосфоглицериновой

1,3-дифосфоглицериновая кислота 3-фосфоглицериновая кислота

7. Затем под действием фермента фосфоглицеромутазы
(2.7.5.3) остаток фосфорной кислоты перемещается от третьего
углерода ко второму, и в результате 3-фосфоглицериновая кис­
лота превращается в 2-фосфоглицериновую кислоту:

2СН 2 (Н 2 Р0 3) CHOHCOOH ^t 2CH 2 0HCH0 (Н 2 Р0 3) СООН. (7)

3-фосфоглицериновая кислота 2-фосфоглицериновая кислота

8. Следующей стадией является дефосфорилирование 2-фос-
фоглицериновой кислоты. При этом 2-фосфоглицериновая кис­
лота под действием фермента энолазы (4.2.1.11) путем дегидра­
тирования (потери воды) превращается в фосфоэнолпировино-
градную кислоту:

2СН 2 ОНСНО (Н 2 Р0 3) СООН qt 2СН 3: СО со (Н 2 Р0 3) СООН + 2Н 2 0. (8)

2-фосфоглицериновая кислота Сосфоэнолпировиноградная кислота

При этом превращении происходит перераспределение внут­римолекулярной энергии и большая ее часть аккумулируется в макроэргической фосфатной связи.

9. Весьма нестойкая фосфоэнолпировиноградная кислота
легко дефосфорилируется, при этом остаток фосфорной кислоты
под действием фермента пируваткиназы (2.7.1.40) передается
вместе с макроэргической связью молекуле АДФ. В результате
образуется более устойчивая кетоформа пировиноградной кисло­
ты, а АДФ превращается в АТФ:

2СН 2: СО сю (Н 2 Р0 3) СООН + 2АДФ -* 2СН 3 СОСООН + 2АТФ. (3)

Фосфоэнолпировиноградная Пировиноградная

кислота кислота

10. Пировиноградная кислота под действием фермента пи-
руватдекарбоксилазы (4.1.1.1) декарбоксилируется с отщепле­
нием С0 2 и образованием уксусного альдегида:

2CH 3 COCOOH -*2С0 2 + 2СН 3 СНО. (10)

Пировиноградная Уксусный альдегид

11. Уксусный альдегид при участии фермента алкогольдегид-
рогеназы (1.1.1.1) взаимодействует с НАД-Н 2 , образовавшимся
ранее при окислении фосфоглицеринового альдегида в фосфо-
глицериновую кислоту [см. уравнение (5)]. В результате уксус­
ный альдегид восстанавливается в этиловый спирт, а кофермент
НАД-Н 2 вновь регенерируется (окисляется в НАД):

2СН 3 СНО + 2НАД Н 2 Z 2СН 3 СН 2 ОН + 2НАД. (11)

Итак, завершающим этапом брожения является реакция восстановления уксусного альдегида в этиловый спирт.

Из рассмотренного цикла реакций спиртового брожения вид­но, что из каждой молекулы глюкозы образуется 2 молекулы спирта и 2 молекулы С0 2 .

В процессе спиртового брожения образуется четыре молеку­лы АТФ [см. уравнения (6) и (9)], но две из них затрачиваются на фосфорилирование гексоз [см. уравнения (1) и (3)]. Таким образом, запасается всего 2 г-моль АТФ.

Ранее указывалось, что на образование каждой грамм-моле­кулы АТФ из АДФ затрачивается 41,9 кДж, а в энергию двух молекул АТФ переходит соответственно 83,8 кДж. Следователь­но, при сбраживании 1 г-моль глюкозы дрожжи получают энер­гии около 84 кДж. В этом и заключается биологический смысл брожения. При полном расщеплении глюкозы на С0 2 и воду выделяет­ся 2874 кДж, а при окислении 1 г-моль глюкозы до С0 2 и Н 2 0 в процессе аэробного дыхания аккумулируется 2508 кДж, так как образующийся этиловый спирт еще сохраняет в себе потен­циальную энергию. Таким образом, с энергетической точки зре­ния брожение - процесс малоэкономичный.

Сбраживание отдельных Сахаров происходит в определенной последовательности, обусловленной скоростью их диффузии в дрожжевую клетку. Быстрее всех сбраживаются дрожжами глюкоза и фруктоза. Однако сахароза как таковая исчезает в сусле (инвертируется) еще в начале брожения. Она гидролизу-ется р-фруктофуранозидазой (3.2.1.26) оболочки дрожжевых клеток с образованием гексоз (глюкозы и фруктозы), которые легко используются клеткой. Когда в сусле почти не остается фруктозы и глюкозы, дрожжи начинают потреблять мальтозу.

§ 5. ВТОРИЧНЫЕ И ПОБОЧНЫЕ ПРОДУКТЫ СПИРТОВОГО БРОЖЕНИЯ

Все вещества, получающиеся в результате сбраживания са­хара дрожжами, за исключением спирта и С0 2 , относятся к вто­ричным продуктам спиртового брожения. Кроме них, имеются побочные продукты спиртового брожения, которые образуются не из сахара, а из других веществ, находящихся в сбраживае­мом субстрате. К ним относятся амиловый, изоамиловый, изо-бутиловый и другие спирты, известные под названием сивушного масла.

Из вторичных продуктов спиртового брожения известны глицерин, уксусный альдегид, пировиноградная, уксусная, ян­тарная, лимонная и молочная кислоты, ацетоин (ацетилметил-карбинол), 2,3-бутиленгликоль и диацетил. В аэробных условиях пировиноградная кислота является также исходным веществом для цикла трикарбоновых кислот (цикла Кребса), по которому из нее образуются уксусная, лимонная, яблочная и янтарная кислоты. Высшие спирты образуются тоже из пировиноградной кислоты путем аминирования ее до аланина, который в свою очередь переаминируется в соответствующую кетокислоту. В ус­ловиях спиртового брожения кетокислоты, восстанавливаясь, образуют высшие спирты. Поэтому вторичные и побочные про­дукты спиртового брожения строго разграничить нельзя.

Уксусный альдегид может испытывать дисмутацию с обра­зованием уксусной кислоты и этилового спирта (реакция Кан-ниццаро):

СН 3 СОН + СН 3 СОН + Н 2 0 = СНзСООН + СН 3 СН 2 ОН.

Одна из молекул альдегида окисляется в кислоту, а другая восстанавливается в спирт. В щелочной среде одна молекула

уксусного альдегида вступает в окислительно-восстановитель­ную реакцию со второй молекулой уксусного альдегида; при этом образуются этиловый спирт, уксусная кислота и одновре­менно с ними глицерин, что выражается таким суммарным урав­нением:

2C 6 Hi 2 0 6 + Н 2 0 = 2СН 2 ОНСНОНСН 2 ОН + СН 3 СН 2 ОН + СН 3 СООН + 2С0 2 .

Глицерин образуется в небольшом количестве при спиртовом брожении. При изменении условий брожения его производство можно осуществить в промышленном масштабе.

Глицерин и уксусный альдегид являются промежуточными продуктами спиртового брожения. На последнем этапе нормаль­но протекающего процесса брожения происходит восстановле­ние значительной части уксусного альдегида в этанол. Но если уксусный альдегид связать сульфитом натрия, то направление спиртового брожения изменится в сторону образования больших количеств глицерина.

Удаление уксусного альдегида из сбраживаемой среды суль­фитом натрия представляется в следующем виде:

СН 3 СНО + Na 2 S0 3 + H 2 OW CH 3 CHONaHS0 2 + NaOH.

Уксусный альдегид, образовавшийся при декарбоксилирова-нии пировиноградной кислоты, в результате связывания суль­фитом не может служить акцептором водорода. Место уксусно­го альдегида занимает фосфодиоксиацетон, который получает водород от восстановленного НАД-Н 2 , образуя а-глицерофос-фат. Эта реакция катализируется ферментом глицерофосфатде-гидрогеназой. Под действием фосфатазы «-глицерофосфат де-фэсфорилируется, превращаясь в глицерин. Таким образом, в присутствии Na 2 S03 протекает глицерино-альдегидное броже­ние:

С 6 Н 12 0 6 = CH3CHO + СН 2 ОНСНОНСН 2 ОН + С0 2 .

Сахар Ацетальдегид Глицерин

С увеличением количества сульфита натрия, вводимого в сбраживаемую среду, соответственно увеличивается количество связанного альдегида и ослабляется образование этанола и С0 2 .

Образование кислот и ацетоина. Янтарная кислота образует­ся дегидрированием и конденсацией двух молекул уксусной кис­лоты с одной молекулой уксусного альдегида (гипотеза В. 3. Гва-ладзе и Женавуа):

2СН 3 С00Н + СН 3 СНО -* С00НСН 2 СН 2 С00Н + СН 3 СН 2 ОН.

В процессе спиртового брожения янтарная кислота образует­ся также дезаминированием глютаминовой кислоты. Акцепто­ром водорода в этой реакции является триозоглицериновый аль- Дегид, поэтому реакция дезаминированйя сопровождается одно­временным накоплением глицерина:

C 6 Hi 2 0 6 + COOHCH2CH2CHNH2COOH + 2Н 2 0 = СО0НСН 2 СН 2 С0ОН -Ь

Глюкоза Глютаминовая кислота Янтарная кислота

2СН 2 ОНСНОНСН 2 ОН 3 + NH 3 + С0 2 .

Глицерин

Амми>ак потребляется дрожжами на синтез белка, а глице­рин и янтарная кислота при этом выделяются в среду.

Образование лимонной кислоты, по Лафону, происходит из. девяти молекул уксусного альдегида:

9СН 3 СОН + 4Н 2 0 = (СН 2 СООН) 2 С (ОН) СООН + 6СН 3 СН 2 ОН.

Лимонная кислота

Образование молочной кислоты объясняют восстановлением пировиноградной кислоты:

СНзСОСООН + Н 2 -> СН 3 СН (ОН) СООН.

Пировиноградная Молочная кислота

Однако полагают более вероятным ее образование в резуль­тате гидролиза промежуточного продукта спиртового броже­ния - фосфоглицеринового альдегида:

СНОСНОНСН 2 ОР0 3 Н 2 + Н 2 0 -* СН 3 СН (ОН) СООН + Н 3 Р0 4 .

Фосфоглицериновьш Молочная кислота

альдегид

Конденсацией уксусной кислоты с ацетальдегидом объясня­ют образование ацетоина:

1) СНзСООН + СН 3 СНО->-СНзСОСОСНз + Н 2 0;

Диацетил

2) СН3СОСОСН3 + СНзСНО -4 СН3СОСНОНСН3 + СНзСООН.

Сначала образуется диацетил; затем путем дисмутации со-пряженного окисления-восстановления за счет воды диацетила с ацетальдегидом образуется ацетоин.

При восстановлении ацетоина образуется 2,3-бутиленгли-коль:

СН 3 СОСНОНСНз + НАД ■ Н 2 СН 3 СНОНСНОНСН 3 + НАД.

Механизм образования некоторых вторичных продуктов спиртового брожения еще не совсем ясен, однако не подлежит сомнению, что уксусный альдегид является основным исходным веществом для синтеза вторичных продуктов брожения.

Среди вторичных продуктов преобладают уксусная и янтар­ная кислоты, а также 2,3-бутиленгликоль и уксусны…


2 Общая характеристика и расы дрожжей, применяемых в бродильных производствах
Культурные дрожжи относятся к семейству сахаромицетов и называютсяSaccharomyces cerevisiae.

Температурный оптимум для размножения дрожжей находится в пределах 25-30°С, а минимальная температура около 2-3°С. При температуре 40°С рост пре­кращается и дрожжи отмирают, но низкие температуры дрожжи переносят хорошо, хотя размножение их приостанавливается. Дрожжи не погибают даже при температуре –180°С (жидкий воздух). При высокой концентрации сахара в среде жизнедеятельность дрожжей прекращается, так как при этом увеличивается осмо­тическое давление, при определенном значении которого насту­пает плазмолиз дрожжевых клеток. Плазмолизом называ­ется сжатие клетки с последующим отслоением протоплазмы от клеточной оболочки вследствие обезвоживания клетки и связан­ного с этим резкого падения давления клеточного сока. Вели­чина предельной концентрации сахара для различных рас дрож­жей неодинакова.

Различают дрожжи верхового и низового брожения. В каж­дой из этих групп имеется несколько отдельных рас.

Дрожжи верхового брожения в стадии интенсивного броже­ния выделяются на поверхности сбраживаемой среды в виде довольно толстого слоя пены и остаются в таком состоянии до окончания брожения. Затем они оседают, но редко дают плот­ный осадок на дне бродильного сосуда. Дрожжи верхового брожения по своей структуре принадлежат к пылевидным дрож­жам, не склеивающимся друг с другом в отличие от хлопьевид­ных дрожжей низового брожения, оболочки которых являются клейкими, что приводит к агглютинации и быстрому осаждению клеток.

Дрожжи низового брожения, развиваясь в сбраживаемой жидкости, не переходят в поверхностный слой – пену, быстро оседают по окончании брожения, образуя плотный слой на дне бродильного сосуда.

Отличительным признаком является способность дрожжей низового брожения полностью сбраживать рафинозу, тогда как большинство дрожжей верхового брожения рафинозу совершен­но не расщепляет, и лишь некоторые виды могут сбраживать ее только на одну треть. Это основное различие объясняется тем, что в ферментном комплексе названного типа дрожжей содер­жится α-галактозидаза.

Из культурных дрожжей к дрожжам низового брожения от­носится большинство винных и пивных дрожжей, а к дрожжам верхового брожения – спиртовые, хлебопекарные и некоторые расы пивных дрожжей. Первоначально были известны только дрожжи верхового брожения, так как брожение всяких соков происходило при обычной температуре. Желая получить напит­ки, насыщенные СО 2 , человек стал вести брожение при низкой температуре. Под влиянием изменившихся внешних условий по­лучились дрожжи низового брожения с их свойствами, получив­шие широкое распространение.

Кроме общих свойств, дрожжи, используемые в том или ином производстве, обладают специфическими показателями. Более того, в одном и том же производстве применяются разновидно­сти, различающиеся одной или несколькими особенностями. Их выводят из одной клетки. Такие культуры называют расами (штаммами). Каждое производство располагает несколькими расами дрожжей.
Расы дрожжей спиртового производства

В спиртовом произ­водстве применяются те расы дрожжей верхового брожения, ко­торые обладают наибольшей энергией брожения, образуют мак­симум спирта и сбраживают моно- и дисахариды, а также часть декстринов. Из дрожжей, применяемых при получении спирта из хлебно-картофельного сырья, следует назвать расы ХП, М и ХV.

При переработке мелассы на спирт применяют расы Я, Л, В, Г-67, Г-73. Эти расы относятся к семейству Saccharomyces taceae, роду Saccharomyces, виду cerevisiae.

Раса ХП выделена в 1902 году из хлебопекарных прессованных дрожжей. Клетки дрожжей этой расы круглые ияйцевидные размерами 5-6,2 х 5-8 мкм.

Развитие и размножение дрож­жей расы ХП идет очень быстро. Они сбраживают глюкозу, фруктозу, сахарозу, галактозу, мальтозу, маннозу, рафинозу на одну треть и могут образовывать в сбраживаемой среде до 13%об спирта.

Раса М (Mischung – смесь), предложенная Геннебергом в 1905 году, состоит из смеси четырех рас дрожжей верхового бро­жения; она предназначена для сбраживания сред, содержащих смесь различных сахаров (декстринов, рафинозы), которые не­одинаково сбраживаются различными дрожжами. Такая смешанная культура очень устойчива против различных ненормаль­ных условий, встречающихся в заводской практике.

Раса ХV по технологическим признакам сходна с расой ХП. Ее применяют наряду с расой ХП для сбраживания смешанного зерно-мелассного сырья.

Из названных рас наиболее пригодной для сбраживания сусла из крахмалистого сырья является раса ХП, которая приме­няется также в гидролизном и сульфитноспиртовом производ­ствах. Правда, для сбраживания сульфитных щелоков выведены специально сульфитные дрожжи, сбраживающие глюкозу, фрук­тозу, галактозу и маннозу.

Дрожжи, применяемые на спиртовых заводах, перерабаты­вающих мелассу, должны обладать специфической способностью быстро сбраживать довольно концентрированные сахарные рас­творы и хорошо переносить высокое содержание солей в среде. Сбраживать же растворы, содержащие большие концентрации сахара, могут так называемые осмофильные дрожжи, которые выносят очень высокое осмотическое давление.

К таким дрож­жам относится раса Я, выведенная из мелассных дрожжей К.Ю. Якубовским. Раса Я обладает исключительной способностью сбраживать вы­сокие концентрации сахара и хорошо переносит высокое содер­жание солей и спирта в сбраживаемом мелассном сусле. Дрож­жи расы Я сбраживают глюкозу, фруктозу, сахарозу, галактозу, мальтозу; рафинозу сбраживают только частично и совершенно не сбраживают декстрины и лактозу. Раса Я относится к пыле­видным дрожжам верхового брожения.

Дрожжи расы Л (Лохвицкая) близки по своим свойствам к дрожжам расы Я, но они несколько лучше размножаются и более полно сбраживают сахар.

Раса В (венгерская) подобно расе Л приспособлена к мелассной среде. Эти расы хорошо сбраживают сахарозу, глюкозу, фруктозу, а рафинозу частично.

Дрожжи рас Л и В наряду с высокими бродильными свойствами обладают также хорошей подъемной силой (способностью поднимать тесто), что позволяет выделять их из бражки и выпускать в прессованном виде в качестве хле­бопекарных.

Успешное применение находят гибридные дрожжи, выведен­ные в Институте генетики АН СССР путем скрещивания двух видов дрожжей. Среди гибридов наибольший интерес представляют Г-67, Г-73. Гибрид 67 получен скрещиванием пивных дрож­жей S-carlsbergensis с S.cerevisiae расы Я. Дальнейшее скрещи­вание гибрида 67 с гибридом 26 (полученным от скрещивания рас Я и ХП) дало гибрид 73. Гибриды 67 и 73 наряду с дру­гими ферментами содержат α-галактозидазу и обладают способ­ностью к полному сбраживанию рафинозы. Рекомендованы к применению и другие гибридные дрожжи.
Расы хлебопекарных дрожжей

В дрожжевом производстве ценятся быстро размножающиеся расы дрожжей, обладающие хорошей подъемной силой и хорошей стойкостью при хранении. Вкус хлебопекарных дрожжей должен быть чистый, цвет белый или желтоватый. Подъемная сила определяется как особенно­стями рас дрожжей, так и способом ведения производства. Стойкость дрожжей является свойством расы, но зависит от внутреннего состояния клеток и чистоты дрожжей.

При производстве хлебопекарных дрожжей из мелассы при­меняются расы VII, 14, 28 и Г-176.

Раса VII, выведенная из прессованных товарных дрожжей Томского дрожжевого завода, быстро размножается и хорошо отпрессовывается до влажности 71-72%. Дрожжи расы VII обладают хорошей подъемной силой и наибольшей стойкостью при хранении по сравнению с други­ми известными в заводской практике. Кроме того, эта культура является устойчивой к вредным примесям, содержащимся в ме­лассе.

Раса 14 предназначена для произ­водства сухих дрожжей. Эти дрожжи отличаются плотной консистенцией при влажности 75%, высокой термоустойчи­востью.

Из гибридов хлебопекарных дрожжей отобран гибрид 176, обладающий всеми положительными признаками: крупными клетками (5,6-14,0 мкм), устойчивостью к вредным примесям мелассы и высо­ким коэффициентом размножения, который у этой расы выше, чем у наиболее быстро размножающейся расы 14. В настоящее время проходят производственные испытания и другие перспек­тивные гибридные расы дрожжей.

Расы пивных дрожжей

В пивоварении используют дрожжи низового брожения, приспособленные к сравнительно низким температурам. Пивные дрожжи должны быть микробиологиче­ски чистые, а также обладать способностью к хлопьеобразованию, быстро оседать на дно бродильного аппарата и давать прозрачный напиток с определенными вкусом и ароматом. К сильносбраживающим и легко дающим хлопья относятся пив­ные дрожжи низового брожения Фроберг (Saccharomyces cere­visiae Froberg), дрожжи рас V и 776.

На пивоваренных заводах большое распространение получили дрожжи расы 776, которая была выведена в начале XX в. Эти дрожжи считаются пригод­ными особенно для сбраживания сусла, приготовленного с добав­кой несоложеных материалов или из солода, полученного солодованием ячменей с невысокой степенью прорастаемости. Дрожжи расы 776 –среднесбраживающие, за период главного брожения на сусле концентрацией 11% образуют примерно 2,7% СО 2 . Клетки яйцевидной формы, длиной 8-10 мкм и ши­риной 5-6 мкм. Прирост дрожжевой массы 1: 5,4. Способность к осветлению удовлетворительная.

Из других дрожжей на пивоваренных заводах применяются расы 11, 41, 44, S-Львовская и др, различающиеся по бродиль­ной энергии, способности к осаждению и энергии роста.

Дрожжи расы 11 – сильносбраживающие, с хорошей способ­ностью к осветлению. Пиво, полученное с применением дрожжей расы 11, имеет хороший вкус. Эта раса получила широкое рас­пространение на пивоваренных заводах.

Дрожжи расы 41 – среднесбраживающие, с хорошей способ­ностью к осаждению. При сбраживании сусла расой 41 получа­ется мягкое пиво с чистым вкусом.

Дрожжи расы 44 – среднесбраживающие. Способность к осаждению хорошая. Сообщают пиву полноту вкуса и дают хорошие результаты при применении в производстве воды с по­вышенной жесткостью.

Дрожжи расы S – среднесбраживающие. Способность к осаждению хорошая. Дают пиво с мягким чистым вкусом.

Дрожжи расы Р – среднесбра­живающие, хорошо осветляют пиво и обусловливают приятный чистый вкус.

Дрожжи расы F характеризуются хо­рошей способностью к осветлению и сообщают пиву приятный аромат. Раса устойчива к действию посторонних микроорга­низмов.

Дрожжи расы А (выделены на рижском пивоваренном заво­де «Алдарис») сбраживают сусло за 7-8 суток, хорошо осветля­ют пиво и устойчивы к инфекции.

Путем разных способов селекции во ВНИИ пивобезалко­гольной промышленности получен ряд сильносбраживающих штаммов дрожжей (28, 48, 102), обладающих значительно боль­шей бродильной энергией, чем дрожжи исходной расы 11.

Пивные дрожжи верхового брожения находят широкое при­менение в Англии при приготовлении Портера. Они применяют­ся также для приготовления Берлинского светлого пива и дру­гих напитков. Для приготовления Бархатного пива применяют штамм 191 К, интенсивно сбраживающий моносахариды и маль­тозу, но не сбраживающий сахарозу, рафинозу и лактозу.

Расы винных дрожжей

В виноделии ценятся дрожжи, быст­ро размножающиеся, обладающие свойством подавлять другие виды дрожжей и микроорганизмы и придавать вину соответст­вующий букет. Дрожжи, применяемые в виноделии, относятся к своеобразному виду Saccharomyces ellipsoideus. Клетки их имеют продолговато-овальную форму. Дрожжи энергично сбра­живают глюкозу, фруктозу, сахарозу и мальтозу. В различных местностях и из различных молодых вин выделено несколько отличающихся одна от другой разновидностей или рас этого вида. В виноделии почти все производственные культуры дрож­жей – своего, местного происхождения. К их числу относятся расы Магарач 7, Массандра 3, Пино 14, Кахури и многие другие. Наряду с этими расами применяются и некоторые иностранные, например раса Штейнберг, выделенная в Германии в 1892 и 1893 гг., и раса Шампань-Аи.

Большая часть винных дрожжей относится к дрожжам низо­вого брожения.

Для приготовления белых столовых вин применяются расы Пино 14, Феодосия 1/19, Алиготе, Рислинг Анапский.

Раса Пино 14 имеет клетки яйцевидной формы, хорошо сбра­живает виноградное сусло сахаристостью 20 % с образованием 11,57%об спирта; оптимальная температура развития и бро­жения 18: -25°С. Эта раса является холодостойкой и кислото­стойкой; оптимальная величина рН 2,9-3,9.

Раса Феодосия 1/19 – крупноклеточная, пылевидная, очень энергичная, быстро сбраживает виноградное сусло и хорошо дображивает его; имеет широкий температурный диапазон бро­жения (от 9 до 35°С) и может применяться как холодостойкая и как термостойкая.

Дрожжей Алиготе имеется несколько рас, и все они сильные, с высокой энергией брожения. К энергично сбраживающим от­носятся и дрожжи Рислинг Анапский.

Для приготовления крепких вин применяется раса Массанд­ра 3 с яйцевидной формой клеток, пылевидная; оптимальная величина рН 3,7-4,05; оптимальная температура брожения 18-20°С. Виноградное сусло с содержанием сахара 20% сбраживается полностью; при сбраживании концентрированного виноградного сусла (30% сахара) образует 11,8%об спирта и оставляет несброженным 8,7% сахара.

Раса Магарач 125, названная в ознаменование 125-летнего юбилея первых посадок винограда в институте «Магарач», при­меняется для получения крепких и десертных вин. Эта раса хо­рошо сбраживает высококонцентрированные виноградные сусла с содержанием сахара 27-30%, холодостойкая.

Раса Кахури 2 широко применяется для приготовления шам­панских виноматериалов и вин. Виноградное сусло с содержанием сахара 20% она сбраживает с образованием 11,4%об спирта, оста­ется несброженным 0,28% сахара. Эта раса довольно холодо­стойкая (при температуре 14-15°С сусло забраживает на 2-й день) и сбраживает хорошо; оптимальная величина рН 3,4-3,6.

Раса Шампанская 7, применяемая для шампанизации вина в бутылках, выделена из расы Кахури 5 и характеризуется об­разованием трудно взмучивающегося осадка; интенсивно сбра­живает при температуре 4-9°С, хотя сусло и забраживает только на 5-6-й день.

Из винных дрожжей наиболее холодостойкой считается раса Ленинградская, а наиболее термостойкой – раса Ашхабадская 3.

В производстве хереса применяются специальные расы дрож­жей, которые являются разновидностью вида Saccharomyces oviformis. Хересные дрожжи образуют на поверхности вина в неполных бочках пленку, благодаря развитию которой вино приобретает особые букет и вкус.

Путем тщательного отбора по наиболее важным производст­венным признакам выделено несколько рас хересных дрожжей (13, 15 и 20) с высокой пленкообразующей способностью. В дальнейшем из производства, применявшего расу Херес 20, была отселекционирована более эффективная раса Херес 20-С, которая нашла широкое применение на многих заводах по про­изводству хереса.

В плодово-ягодном виноделии применяются селекционирован­ные расы дрожжей, выделенные из различных плодово-ягодных соков. Плодово-ягодные соки богаты дрожжами, обладающими всеми необходимыми для производства качествами и биологи­чески приспособленными к условиям развития в исходных пло­дово-ягодных соках. Поэтому штаммы дрожжей, выделенных из земляничных соков, применяются для сбраживания земляничных соков, а штаммы дрожжей, выделенных из вишневых соков, при­меняются для сбраживания вишневых соков и т. д.

В плодово-ягодном виноделии получили распространение следующие штаммы: яблочные 46, 58, клюквенный 17, смородиновый 16, брусничные 3, 7, 10, малино­вые 7/5, 25, 28, 28/10, вишневые 3, 6, земляничные 7, 4, 9.

Назван­ные штаммы дрожжей обеспечивают нормальный ход брожения, полноту сбраживания, быструю осветляемость и хорошие вкусо­вые качества вина; они сбраживают глюкозу, фруктозу, сахаро­зу, мальтозу, галактозу и не сбраживают лактозу и маннит.

Успешно применяются в плодово-ягодном виноделии расы дрожжей Москва 30, Яблочная 7, Вишневая 33, Черносмородиновая 7, Малиновая 10 и Сливовая 21. Чистая культура дрожжей Москва 30 рекомендуется для сбраживания клюквенного сусла; Яблочная 7 и Вишневая 33 – для сбраживания яблочного сус­ла; Черносмородиновая 7 и Вишневая 33 – для сбраживания черносмородинового и вишневого сусла.

4 Химизм спиртового брожения. Вторичные и побочные продукты спиртового брожения
Спиртовое брожение представляет собой цепь ферментатив­ных процессов, конечным результатом которых является распад гексозы с образованием спирта и СО 2 и доставка дрожжевой клетке той энергии, которая необходима для образования новых веществ, используемых для процессов жизнедеятельности, в том числе для роста и размножения. По химическому характеру спир­товое брожение – каталитический процесс, происходящий под действием биологических катализаторов – ферментов.

Современная теория спиртового брожения является резуль­татом работ многих ученых различных стран мира.

Для выяснения процессов брожения большое значение имели работы выдающихся отечественных ученых: Лебедева, Костычева, Фаворского, Иванова, Энгельгардта.

По современным представлениям, спиртвое брожение – это сложный непрерывный процесс распада сахара, катализируемый разными ферментами с образованием 12 промежуточных продуктов.

1 Начальной стадией превращения глюкозы является ре­акция фосфорилирования ее при участии фермента глюкозиназы. К молекуле глюкозы присоединяется фосфатный остаток от молекулы АТФ, которая находится в клетках дрож­жей, и образуется глюкозо-6-фосфат, а АТФ превращается в АДФ:

С 6 Н 12 О 6 + АТФ → СН 2 О(Н 2 РО 3)(СНОН) 4 СНО+АДФ

Глюкоза Глюкозо-6-фосфат

В результате присоединения фосфатного остатка от молеку­лы АТФ к глюкозе реакционная способность последней возра­стает.
2 Глюкозо-6-фосфат путем изомеризации под действием фермента глюкозофосфатизомеразы переходит обрати­мо в форму фруктозы:

СН 2 О(Н 2 РО 3)(СНОН) 4 СНО → СН 2 О(Н 2 РО 3)(СНОН) 3 СОСН 2 ОН

СН 2 О(Н 2 РО 3)(СНОН)3СОСН 2 ОН + АТФ →

Фруктозо-6-фосфат

→ СН 2 О(Н 2 РО 3)(СНОН) 3 СОСН 2 О(Н 2 РО) + АДФ

Фруктозо-1,6-дифосфат

Эфиры глюкозо-6-фосфат и фруктозо-6-фосфат образуют равновесную смесь, получившую название эфира Эмдена и со­стоящую на 70-75% из эфира Робисона (глюкозы) и на 25% из эфира Нейберга (фруктозы).

Образованием фруктозо-1,6-дифосфата заканчивается подготовительнаястадия спиртового брожения с переносом макроэргических фосфатных связей и с преобразованием гексозы в лабильную оксиформу, легко подвергающуюся дальнейшим фер­ментативным превращениям.
4 Следующим важнейшим этапом является десмолиз – разрыв углеродной цепи фруктозодифосфата с образованием двух
молекул фосфотриоз. Симметричное расположение остатков фосфорной кислоты по концам молекулы фруктозы облегчает разрыв ее углеродной цепи как раз в середине. Фруктозодифосфат распадается при этом на две триозы: фосфоглицериновый альдегид и фосфодиоксиацетон. Реакция катализируется фер­ментом альдолазой и обратима:

СН 2 О(Н 2 РО 3)(СНОН) 3 СОСН 2 О(Н 2 РО) → CH 2 О(Н 2 Р0 3)СОСН 2 ОН +

Фруктозо-1,6-дифосфат Фосфодиоксиацетон

СН 2 0 (Н 2 РОз) СНОНСНО (4)

З-фосфоглицериновый альдегид

Главная роль в дальнейших превращениях при спиртовом брожении принадлежит 3-фосфоглицериновому альдегиду, но в сбраживаемой жидкости он обнаруживается лишь в незначи­тельном количестве. Это объясняется взаимным переходом ке-тозного изомера в альдозный и обратно под действием фермента триозофосфатизомеразы (5.3.1.1)

СН 2 0 (Н 2 Р0 3) СОСН 2 ОН;£ СН 2 0 (Н 2 Р0 3) СНОНСНО

Фосфодиоксиацетон З-фосфоглицериновый альдегид

По мере дальнейшего превращения фосфоглицеринового аль­дегида новые количества его образуются в процессе изомериза­ции фосфодиоксиацетона.

5. Последующим этапом является окисление двух молекул З^фосфоглицеринового альдегида. Эта реакция катализируется триозофосфатдегидрогеназой (1.2.1.12), коферментом которой яв­ляется НАД (никотинамид-аденин-динуклеотид). В окислении участвует фосфорная кислота среды. Реакция протекает по сле­дующему уравнению: 2СН 2 0 (Н 2 Р0 3) СНОНСНО + 2Н 3 Р0 4 + 2НАД Триозофосфатдегидрогеназа ->

З-фосфоглицериновый альдегид

->- 2СН 2 0 (Н 2 Р0 3) СНОНСОО w (H 2 P0 3) + 2НАД Н 2 (5)

1,3-дифосфоглицериновая йислота

Молекула 3-фосфоглицеринового альдегида присоединяет фосфат, а водород переносится на кофермент НАД, который восстанавливается. Энергия, освобождающаяся в результате окисления 3-фосфоглицеринового альдегида, аккумулируется в макроэргической связи образующейся 1,3-дифосфоглицериновой

6. Далее фосфатный остаток 1,3-дифосфоглицериновой кисло­
ты, содержащий макроэргическую связь, при участии фермента
фосфоглицераткиназы (2.7.2.3) переносится на молекулу АДФ.
Образуется 3-фосфоглицериновая кислота, а АДФ, приобретая
дополнительную макроэргическую связь, превращается в АТФ:
2СН 2 0 (Н 2 Р0 3) СНОНСОО со (Н 2 Р0 3) + 2АДФ->2СН 2 0 (Н 2 Р0 3) CHOHCOOH+

1,3-дифосфоглицериновая кислота 3-фосфоглицериновая кислота

7. Затем под действием фермента фосфоглицеромутазы
(2.7.5.3) остаток фосфорной кислоты перемещается от третьего
углерода ко второму, и в результате 3-фосфоглицериновая кис­
лота превращается в 2-фосфоглицериновую кислоту:

2СН 2 (Н 2 Р0 3) CHOHCOOH ^t 2CH 2 0HCH0 (Н 2 Р0 3) СООН. (7)

3-фосфоглицериновая кислота 2-фосфоглицериновая кислота

8. Следующей стадией является дефосфорилирование 2-фос-
фоглицериновой кислоты. При этом 2-фосфоглицериновая кис­
лота под действием фермента энолазы (4.2.1.11) путем дегидра­
тирования (потери воды) превращается в фосфоэнолпировино-
градную кислоту:

2СН 2 ОНСНО (Н 2 Р0 3) СООН qt 2СН 3: СО со (Н 2 Р0 3) СООН + 2Н 2 0. (8)

2-фосфоглицериновая кислота Сосфоэнолпировиноградная кислота

При этом превращении происходит перераспределение внут­римолекулярной энергии и большая ее часть аккумулируется в макроэргической фосфатной связи.

9. Весьма нестойкая фосфоэнолпировиноградная кислота
легко дефосфорилируется, при этом остаток фосфорной кислоты
под действием фермента пируваткиназы (2.7.1.40) передается
вместе с макроэргической связью молекуле АДФ. В результате
образуется более устойчивая кетоформа пировиноградной кисло­
ты, а АДФ превращается в АТФ:

2СН 2: СО сю (Н 2 Р0 3) СООН + 2АДФ -* 2СН 3 СОСООН + 2АТФ. (3)

Фосфоэнолпировиноградная Пировиноградная

кислота кислота

10. Пировиноградная кислота под действием фермента пи-
руватдекарбоксилазы (4.1.1.1) декарбоксилируется с отщепле­
нием С0 2 и образованием уксусного альдегида:

2CH 3 COCOOH -*2С0 2 + 2СН 3 СНО. (10)

Пировиноградная Уксусный альдегид

11. Уксусный альдегид при участии фермента алкогольдегид-
рогеназы (1.1.1.1) взаимодействует с НАД-Н 2 , образовавшимся
ранее при окислении фосфоглицеринового альдегида в фосфо-
глицериновую кислоту [см. уравнение (5)]. В результате уксус­
ный альдегид восстанавливается в этиловый спирт, а кофермент
НАД-Н 2 вновь регенерируется (окисляется в НАД):

2СН 3 СНО + 2НАД Н 2 Z 2СН 3 СН 2 ОН + 2НАД. (11)

Итак, завершающим этапом брожения является реакция восстановления уксусного альдегида в этиловый спирт.

Из рассмотренного цикла реакций спиртового брожения вид­но, что из каждой молекулы глюкозы образуется 2 молекулы спирта и 2 молекулы С0 2 .

В процессе спиртового брожения образуется четыре молеку­лы АТФ [см. уравнения (6) и (9)], но две из них затрачиваются на фосфорилирование гексоз [см. уравнения (1) и (3)]. Таким образом, запасается всего 2 г-моль АТФ.

Ранее указывалось, что на образование каждой грамм-моле­кулы АТФ из АДФ затрачивается 41,9 кДж, а в энергию двух молекул АТФ переходит соответственно 83,8 кДж. Следователь­но, при сбраживании 1 г-моль глюкозы дрожжи получают энер­гии около 84 кДж. В этом и заключается биологический смысл брожения. При полном расщеплении глюкозы на С0 2 и воду выделяет­ся 2874 кДж, а при окислении 1 г-моль глюкозы до С0 2 и Н 2 0 в процессе аэробного дыхания аккумулируется 2508 кДж, так как образующийся этиловый спирт еще сохраняет в себе потен­циальную энергию. Таким образом, с энергетической точки зре­ния брожение - процесс малоэкономичный.

Сбраживание отдельных Сахаров происходит в определенной последовательности, обусловленной скоростью их диффузии в дрожжевую клетку. Быстрее всех сбраживаются дрожжами глюкоза и фруктоза. Однако сахароза как таковая исчезает в сусле (инвертируется) еще в начале брожения. Она гидролизу-ется р-фруктофуранозидазой (3.2.1.26) оболочки дрожжевых клеток с образованием гексоз (глюкозы и фруктозы), которые легко используются клеткой. Когда в сусле почти не остается фруктозы и глюкозы, дрожжи начинают потреблять мальтозу.

Раздел 3.Производство пива.

Глава 6. Брожение пивного сусла.

Пивные дрожжи .

Строение дрожжевой клетки . Дрожжи - одноклеточные организмы, относящиеся к классу сумчатых грибов. Форма дрожжевых клеток бывает овальной, округлой и эллиптической.

Дрожжевая клетка имеет клеточную стенку 1, под которой располагается цитоплазматическая мембрана. Мембрана обладает избирательной проницаемостью, оказывая влияние на обмен веществ между клеткой и средой.

Например, молекулы аминокислот и глюкозы проникают через мембрану быстрее, чем ионы металлов, которые меньше по размеру. Внутри клетки содержится круглое или овальное ядро 2, окруженное двойной мембраной. Внутри ядра расположено ядрышко. Ядро необходимо для процессов обмена веществ, обеспечивающих рост и

размножение дрожжей.

Основой клетки является цитоплазма 3, представляющая собой вязкую, слегка желтоватую жидкость. Она выполняет многие функции так, например, первая стадия дыхания и спиртовое брожение протекают непосредственно в цитоплазме. Здесь же находятся структурные элементы клетки: вакуоль 4, митохондрии 5, рибосомы 6. Митохондрии- это очень мелкие частицы каплеобразной формы, в которых происходят процессы, связанные с окислительным обменом веществ. Рибосома представляет собой пузырек, окруженный мембраной. Рибосомы являются местом, где происходит синтез белков. Вакуоли- полости, наполненные клеточным соком и отделенные от цитоплазмы вакуолярной мембраной. В них находится метахроматин, обусловливающий рост и размножение дрожжевых клеток. В вакуолях протекают окислительно –восстановительные процессы.

Величина дрожжевых клеток зависит от расы, физиологического состояния дрожжей и состава питательной среды. Прессованные дрожжи содержат около 30% сухих веществ и 70% воды. В сухих веществах дрожжей содержится 90-95% органических веществ и 5-10% неорганических веществ. Среди органических веществ имеются белки и азотсодержащие вещества-54-56%, углеводы-24-40%, жиры-2-4% (к массе сухих веществ). основная часть углеводов представлена гликогеном(запасное вещество), сходным по химстроению с амилопектином крахмала. Среди неорганических веществ около половины фосфорной кислоты и 1/3 калия.

В золе дрожжей содержится (в %): Р 2 О 5 –47-53, К 2 О- 28-40; СаО-0,4 –11,3; Мg О-3,0-7,4;SiO 2 -0,28- 0,73; SiO 3 - 0,09-0,74; Сl –0,1-0,65. Кроме того, в небольшом количестве имеются S , Zn , Mn , Cu , Fe .

Фосфорные соединения имеют важное значение в обмене веществ дрожжевых клеток, так как входят в состав промежуточных веществ спиртового брожения, а калий играет первостепенную роль в построении молекул белков и углеводов. Дрожжи богаты витаминами группы В, содержат эргостерин(провитамин D ) и др. В дрожжах содержатся различные ферментные системы, участвующие в процессах гидролиза и синтеза, а также в процессах брожения и дыхания.

Стадия роста дрожжей . Ростом дрожжей называют увеличение числа их клеток, т.е. – размножение. Дрожжевые клетки при нормальных условиях размножаются почкованием. Материнская клетка образует почку, которая вырастает в дочернюю клетку. При недостатке питательных веществ или при других неблагоприятных условиях внутри клетки образуются перегородки, и клетка распадается по этим перегородкам, образуя споры. В среде с хорошими условиями питания споры прорастают и образуют новые дрожжевые клетки. Пивное сусло содержит все необходимые вещества для размножения клеток, поэтому при сбраживании сусла дрожжи размножаются только почкованием, не образуя спор.

После введения дрожжей в сусло наблюдаются их количественные и качественные изменения. Количество дрожжей Увеличивается в несколько раз, однако их концентрация в диспергированном состоянии вначале увеличивается, достигая максимальной величины, а затем снижается. Размножение дрожжей при сбраживании пивного сусла проходит в несколько этапов. На кривой роста можно выделить несколько этапов. (По вертикали- число дрожжевых клеток, по горизонтали – время.)

В начальной фазе, называемой латентной или лаг- фазой (задержка роста), дрожжи приспосабливаются к новой среде и подготавливаются к размножению. Эту фазу условно делят на две части: фазу действительного покоя, когда клетки приспосабливаются к среде,и фазу постепенного начала размножения. Продолжительность латентной фазы для пивных дрожжей 1-1,5 сут. В ней клетки увеличиваются в объеме и удлиняются, растет доля почкующихся клеток.

При следующей фазе, называемой логарифмической, скорость размножения дрожжей максимальная, все клетки активны и находятся в бродящей среде во взвешенном состоянии.

После логарифмической фазы наступает стационарная фаза, когда размножение клеток замедляется, при этом скорость отмирания и размножения уравновешиваются, в результате чего число живых клеток остается без изменения.

Последняя фаза, называемая фазой затухания, характеризуется снижением активности клеток, что обусловлено уменьшением массы питательных веществ и увеличением количества продуктов обмена. Размножение прекращается, клетки отмирают и оседают на дно бродильного аппарата.

В живой дрожжевой клетке жизнедеятельность поддерживается различными биохимическими процессами, а при её отмирании согласованность этих процессов нарушается и начинается автолиз, т.е. распад клетки под действием собственных ферментов. При этом структура клеток нарушается, повышается активность у одних ферментов и ослабевает у других.

Например, гидролитические ферменты активизируются, а ферменты дыхания и брожения погибают. При автолизе дрожжей происходит распад белковых веществ, углеводородов, жиров, органических фосфорных соединений, образуются низкомолекулярные продукты распада, которые диффундируют через стенки клеток в пиво и изменяют его вкус. При незначительном автолизе появляется слабый дрожжевой привкус, а при сильном автолизе - горький посторонний вкус. Выделяемые при автолизе азотистые вещества могут быть коллоидного помутнения пива.

Расы пивных дрожжей. В пивоваренном производстве используют только культурные дрожжи, которые относятся к семейству сахаромецетацеа (Saccharomycetaceae ) и к роду сахаромицес (Saccharomyces ). Различают дрожжи низового брожения сахаромицес карлсбергенсис (Saccharomyces carlsbergensis ) и дрожжи верхового брожения – сахаромицес церевизие (Saccharomyces cerevisiae ).

Первоначально были известны дрожжи верхового брожения, так как брожение проходило только при обычной температуре (как в виноделии, хлебопечении). желая получить напитки, насыщенные углекислым газом, стали проводить брожение при низких температурах. Под влиянием изменившихся внешних условий и были получены дрожжи низового брожения с определенными свойствами.

В пивоварении применяют разновидности дрожжей, отличающихся друг от друга одной или несколькими особенностями. Их получают из одной клетки. такие культуры называют расами (штаммами).

Дрожжи верхового брожения в процессе интенсивного броения всплывают на поверхность сбраживаемой жидкости, накапливаются в виде слоя пены и остаются в таком виде до конца брожения. Затем они оседают, образуя весьма рыхлый слой на дне бродильного аппарата. по своей структуре эти дрожжи относятся к пылевидным дрожжам, не слипающимися между собой в отличие от хлопьевидных низовых дрожжей, оболочки которых клейкие, что приводит к слипанию(агглютинация) и быстрому осаждению клеткок.

Дрожжи низового брожения не переходят в поверхностный слой пива- пену, а быстро оседают на дне бродильного аппарата.

Способность дрожжей к хлопьеобразованию имеет важное значение для технологии сбраживанияпивного сусла, так как способствует ускорению осветления пива и облегчает съём дрожжей из бродильного аппарата после брожения с последующим использованием их в качестве семенных дрожжей. Низкая температура при брожении содействует хлопьеобразованию.

Реакция среды сильно влияет на свойства дрожжей. Например, в кислой среде при рН менее 3 и в щелочной при рН более 8 хлопьевидные дрожжи становятся пылевидными. Хлопьевидные дрожжи по сравнению с пылевидными имеют более крупные клетки, меньше подвержены автолизу, дают большой прирост биомассы, обладают меньшей бродильной активностью, образуют меньше диацетила и высших спиртов в пиве, что положительно сказывается на его качестве.

Дрожжи низового брожения отличаются от дрожжей верхового брожения тем, что они полностью сбраживают раффинозу. Дрожжи низового брожения имеют оптимальную температуру для роста25 - 27С, минимальную 2-3С, а при 60-65С они отмирают. Максимальное развитие низовых дрожжей происходит при рН4,8-5,3. Кислород, растворенный в сусле,способствует размножению дрожжей,в то время как продукты брожения (этиловый спирт, диоксид углерода, высшие спирты, ацетальдегид, кислоты), а также повышенная концентрация сахара угнетают развитие дрожжей.

Пивные дрожжи должны отвечать следующим требованиям: Быстро сбраживать сусло, хорошо образовывать хлопья и осветлять пиво в ходе брожения, придавать пиву чистый вкус и приятный аромат.

Бродильную активность дрожжей определяют по степени сбраживания сусла. Степень сбраживания (V ) –это показатель, выраженный в процентах характеризующий отношение массы сброженного экстракта (Е-е) к массе сухих веществ в начальном сусле (Е):V = ((E -e )100)/ Е,Где е- содержание в пиве экстрактивных веществ, % к массе пива.

По степени сбраживания дрожжи делятся на сильно-, или высокосбраживающие (степень сбраживания 90-100%), среднесбраживающие (80-90%), слабо, или низкосбраживающие (менее 80%).

К сильносбраживающим относятся дрожжи рас: 11, F (получена в Чехии), штамм 8а(М). Дрожжи расы 11 нетребовательны к качаеству сырья, хорошо оседают, пиво характеризуется полным вкусом. Дрожжи расы F хорошо осветляют пиво, рпидают ему приятный аромат, устойчивы к инфекции. Дрожжи штамма 8а (М) имеют высокую бродильную активность, повышенный коэффициент размножения, хорошо оседают.Использование этих дрожжей дает возможность сократить длительность главного брожения с 7 до 5 сут и получить пиво с хорошим вкусом.

К среднесбраживающим относятся дрожжи рас 776, 41, 44, S (львовская), Р (Чехия),

А (рижская). Дрожжи расы 776 неприхотливы к сырью, их можно использовать для приготовления пива с применением несоложеных материалов. Готовое пиво имеет удовлетворительный вкус резкую хмелевую горечь. Дрожжи рас 41, 44, S , Робладают хорошей способностью оседания, вкус пива чистый мягкий, Дрожжи расы 44 дают возможность получать хорошее пиво при применении воды повышенной жесткости. Дрожжи рас F , A хорошо осветляют пиво, устойчивы к инфекции.

Для темных и специальных сортов пива применяют дрожжи верхового брожения.

Требования, предъявляемые к качеству дрожжей, не всегда удовлетворяются одной расой, поэтому в производстве применяют смесь рас или ведут брожение сусла отдельно на разных расах, а затем смешивают молодое пиво.

Разведение дрожжей чистой культуры .

Под разведением понимают увеличение массы дрожжей в количестве от массы в одной пробирке до массы маточных, необходимой для внесения в бродильный аппарат.

Весь процесс разведения состоит из двух стадий: лабораторной (разведение дрожжей в лаборатории) и цеховой (разведение дрожжей в отделении чистой культуры).

Лабораторная стадия состоит из нескольких последовательных пересевов. Вначале чистую культуру из пробирки пересевают в колбочки на стерильное сусло, затем проводят пересев дрожжей со стерильным сброженным суслом на новое стерильное сусло, объем которого от пересева к пересеву увеличивается в несколько раз. Лабораторная стадия заканчивается сбраживанием 6 л сусла в медной колбе Карлсберга в течении 5-6 сут при 7-8 о С.

Цеховая стадия- это разведение дрожжей на стерильном охмеленном сусле в специальных аппаратах.

На рисунке показана установка Грейнера для разведения чистой культуры дрожжей в цехе (трубопроводы не показаны). Установка состоит из стерилизатора 4 , двух бродильных цилиндров 3,число которых изменяется в зависимости от количества используемых дрожжей, резервуара для предварительного брожения 1 и посуда 2 для посевных дрожжей.

Стерилизатор и резервуар предварительного брожения оборудованы змеевиками для нагревания или охлаждения сусла, воздушными фильтрами и контрольно- измерительной аппаратурой.

Бродильные цилиндры имеют сосуды для посевных дрожжей вместимостью 10 л.

Стерилизатор предназначен для кипячения сусла (стерилизация) и последующего его охлаждения, Бродильный цилиндр- для первой стадии размножения, резервуар предварительного брожения- для стерилизации и охлаждения сусла, а также проведения второй стадии размножения чистой культуры. Температура воздуха в отделении чистой культуры 8-9 о С.

Разведение чистой культуры происходит следующим образом. В стерилизатор 4 из сусловарочного котла набирают горячее охмеленное сусло, кипятят его в течении 1 ч, затем охлаждают до8-12 о С. С помощью сжатого стерильного воздуха сусло подают в цилиндр 3, куда через специальный краниз медной колбы Карлсберга вводят чистую культуру, затем сбраживают в течении 3 сут.При этом дрожжи размножаются и увеличиваются в массе. к концу третьих суток резервуар предварительного брожения заполняют суслом, которое также нагревают до кипения, а затем охлаждают. Часть чистой культуры из бродильного цилиндра 3 отбирают на хранение в сосуд 2 для посевных дрожжей, где она хранится до до следующей разводки, а основную часть его перекачивают в резервуар 1,где осуществляют предварительное брожение при 9 о С в течение 3 сут.

В следующих циклах разведения дрожжи для посева в стерильное сусло, находящееся в бродильном цилиндре 3 берут из сосуда 2. Процесс разведения чистой культуры в установке Грейнера повторяют многократно до обнаружения в дрожжах посторонней микрофлоры.

Сбраживаемую массу из резервуара 1 перекачивают в специальный аппарат для предварительного брожения вместимостью 1000 дал, но наполненный на 1/3 суслом температурой 5-7 о С.Через 12 ч брожения в этот аппарат доливают еще 400 дал свежего охмеленного сусла и продолжают брожение еще 36 ч, поддерживая температуру 5-7С. Затем сбраживаемое сусло перекачивают в аппарат для главного брожения с 700 дал сусла, а через 1 сут заполняют его суслом до полной вместимости и ведут брожение обычным способом, контролируя температуру, концентрацию сусла и осветление. Осевшие при брожении дрожжи смывают, промывают холодной водой и используют в производстве как первую генерацию.

Дрожжерастительные аппараты перед началом работы стерилизуют паром в течение 45 мин под давлением 0,15- 0,17 МПа. Воздух, поступающий в стерилизатор, должен проходить через воздушные фильтры.

Промышленность выпускает пищевой и технический этиловый спирт. Пищевой получают брожением при переработке зерна, картофеля, сахарной свеклы, мелассы; технический – брожением гидролизатов древесины (гидролизный спирт), сульфитных щелоков или путем синтеза из газов, содержащих этилен.

Спиртовые заводы вырабатывают: спирт этиловый сырец с содержанием спирта не менее 88 % об содержание примесей составляет 0,4 – 0,5 %; спирт этиловый ректифицрованный разной степени очистки.

Микроорганизмы, используемые в производстве. При производстве спирта биохимическим способом используют следующие микроорганизмы:

Дрожжи. Вспиртовом производстве используют хлебопекарные дрожжи Saccharomyces cerevisia (верхового брожения) или гибридные расы пивоваренных дрожжей Saccharomyces carlsbergensis и рас хлебопекарных дрожжей.

Дрожжи сбраживают глюкозу, сахарозу, мальтозу, галактозу, раффинозу, накапливают спирта до 13 % об. Оптимальная температура 30 – 33° С. Хорошо переносят повышенную кислотность среды при подкислении серной кислотой в процессе очистки дрожжей в производстве.

Оценка производственных свойств чистых культур дрожжей. К расам спиртовых дрожжей предъявляются следующие требования:

· высокая бродильная активность;

· способность быстро и полно сбраживать сахара среды, т. е. способность давать низкие отброды;

· стойкость к высоким концентрациям спирта;

· устойчивость к подкислению среды и к продуктам обмена посторонних микроорганизмов.

Зрелые производственные дрожжи, поступающие в бродильные аппараты, должны иметь следующие показатели:

· количество почкующихся клеток 10 – 15 %;

· количество отмерших клеток не более 2 – 4 % (увеличение количества отмерших клеток указывает на наличие в среде факторов, угнетающих жизнедеятельность дрожжей);

· количество клеток, содержащих гликоген, должно быть не менее 70 %, уменьшение количества таких клеток указывает на то, что дрожжи слабо упитаны и ослаблены;

· количество дрожжевых клеток в 1 мл среды должно быть не менее 120 – 140 млн.;

· при микроскопировании не должно обнаруживаться подвижных форм бактерий, а неподвижных – не более 4 – 6;

· расы дрожжей, применяемые для сбраживания мелассовых растворов, должны сбраживать сахарозу, глюкозу, раффинозу на 1/3 или полностью.

Основными факторами, влияющими на жизнедеятельность дрожжей в спиртовом производстве, являются температура, рН среды, концентрация сусла, содержание органических и неорганических кислот.

Температура. Оптимальная скорость роста спиртовых дрожжей 30 –32 °С, однако дрожжи, выращенные при температуре ниже оптимальной имеют более высокую бродильную активность, поэтому процесс брожения начинают при температуре 18 – 22 °С, а во время брожения ее поддерживают на уровне 29 – 30 °С. Более высокая температура вызывает снижение бродильной активности и способствует развитию молочнокислых бактерий и диких дрожжей.

РН среды. Водородные ионы изменяют электрический заряд коллоидов плазменной оболочки клетки и в зависимости от концентрации могут увеличивать или уменьшать проницаемость оболочки клеток для отдельных веществ и ионов. От величины рН зависит скорость поступления питательных веществ в клетку, активность ферментов, образование витаминов.

При изменении рН среды изменяется характер брожения: если рН смещается в щелочную зону, то увеличивается содержание глицерина и побочных веществ в бражке. Оптимальным рН для развития дрожжей является 4,8 – 5,0, однако в спиртовом производстве его стараются поддерживать на уровне 3,8 – 4,0, чтобы подавить развитие молочнокислых бактерий. Необходимый рН создают добавлением серной, соляной или молочной кислоты.

Содержание сахара в сусле. Очень высокие концентрации сахара повышают осмотическое давление в дрожжевых клетках, а низкие – экономически невыгодны, поэтому сбраживают сусло с содержанием сухих веществ, что соответствует содержанию в нем 13 – 15 % сахара. В зависимости от исходной концентрации сахара и производственных потерь содержание спирта в зрелой бражке составляет 8 – 9,5 об. %.

Молочнокислые бактерии. Иногда для подкисления сусла при производстве спирта из картофеля и зерна используютмолочнокислые бактерии вида Lactobacillus delbrueckii . Культивирование молочнокислых палочек ведут при температуре 50°С. В сусле, подкисленном молочнокислыми бактериями, увеличивается содержание растворимых азотистых веществ, что благоприятно сказывается на размножение дрожжей.

Плесневые грибы. Для получения осахаривающих препаратов более дешевых и активных, чем солод, используются специально отобранные активные штаммы Aspergilus batatae, Asp. niger, Asp. orizae и др. Такие грибы являются хорошими продуцентами амилолитических ферментов.

Получение этилового спирта биохимическим путем основано на жизнедеятельности дрожжевых грибов Saccharomyces cerevisiae , превращающих сахара питательной среды в спирт, углекислый газ и небольшое количество побочных продуктов, некоторая часть сахаров используется на процессы синтеза при росте дрожжевых клеток.

Спирт, накопившийся в среде, выделяют перегонкой; углекислый газ улавливается особыми аппаратами и превращается в жидкую и твердую углекислоту. Побочные продукты брожения, так же как и дрожжи, отделяют и используют в технике и хлебопечении.

Подготовка сырья . Наиболее часто употребляемым сырьем являются:

В зависимости от перерабатываемого сырья технологический процесс имеет свои особенности.

Крахмалсодержащее сырье. Крахмал – сложный полисахарид. Дрожжи не сбраживают его вследствие отсутствия у них амилазы. Следовательно, крахмалсодержащее сырье необходимо предварительно подвергнуть осахариванию. Однако крахмал, содержащийся в клетках зерна или картофеля, недоступен для амилазы. Чтобы разрушить или ослабить стенки клеток, сырье подвергают действию высокой температуры и давления, в результате происходит разваривание, клейстеризация и разжижение крахмала. Следующим этапом является осахаривание. Это – процесс превращения оклейстеризованного крахмала сырья в сахара под влиянием осахаривающих ферментов. Источниками осахаривающих ферментов являются солод или плесневые грибы.

Подготовка посевного материала. Дрожжи размножают в дрожжевом отделении завода с соблюдением всех необходимых условий для получения чистых и физиологически активных производственных дрожжей. Чистую культуру дрожжей накапливают постепенно, в несколько стадий. Для размножения дрожжей создают оптимальные условия питания и температуры.

При получении посевного материала дрожжей вначале получают лабораторную чистую культуру используя в качестве питательной среды стерильное солодовое сусло с содержанием сухих веществ 8 – 10 %.

Производственные стадии разведения чистой культуры осуществляют на питательной среде содержащей то сырье, которое перерабатывают на данном заводе: зерновое, картофельное или меласса. По окончании производственной стадии дрожжи передают в дрожжевой аппарат или дрожжегенератор. В 1 мл среды в дрожжегенераторе должно содержаться не менее 150 – 200 млн. клеток дрожжей чистой культуры, так как при таком их количестве дрожжи устойчивее к заражению их посторонними микроорганизмами.

Основная ферментация. Дрожжи из дрожжегенератора поступают в бродильное отделение завода, где происходит главный процесс брожения.

Существует несколько методов сбраживания сырья: периодический, полунепрерывный и непрерывный.

Методы проточных культур являются более производительными. При непрерывном методе сбраживания создаются более благоприятные условия для жизнедеятельности дрожжей – постоянное обновление среды, удаление вредных продуктов обмена и возможность сохранения всех благоприятных параметров на одном уровне. Кроме того, преимущество непрерывного процесса – это возможность его механизации и автоматизации.

Брожение идет в батарее бродильных аппаратов, последовательно соединенных коммуникациями, по которым бражка перетекает из одного аппарата в другой. Главное брожение протекает в первых аппаратах, в последующих по потоку происходит дображивание.

Отгонка спирта и его ректификация. Отбродившая зрелая бражка поступает в бражный резервуар, откуда насосом передается на брагоперегонные аппараты. В этих аппаратах из бражки выделяются этиловый спирт и все летучие примеси. Получаемый продукт называется спирт-сырец, а остаток – бардой. Спирт-сырец используют для технических целей или подвергают очистке от примесей – ректификации. Сивушные масла, альдегиды и эфиры, содержащиеся в спирте-сырце, при ректификации отбирают и получают спирт-ректификат разной степени очистки.

Посторонние микроорганизмы спиртового производства.

К микроорганизмам опасными для спиртового производства, снижающим выход спирта за счет угнетения жизнедеятельности дрожжей продуктами своего метаболизма можно отнести:

спорообразующие бактерии как аэробные, так и анаэробные, чаще всего это маслянокислые. При разваривании зерна споры не погибают и в дальнейшем могут размножаться в осахаренной массе и вызывать закисание ее. Кроме того, эти бактерии восстанавливают содержащиеся в мелассе нитраты в нитриты, угнетающие жизнедеятельность дрожжевых клеток;

дрожжи Saccharomyces exiguus, Saccharomyces intermedius, дрожжеподобные грибы родов Torulopsis и Candida;

гетероферментативные молочнокислые бактерии . Продукты обмена этих микроорганизмов – уксусная и муравьиная кислоты, эфиры и альдегиды – угнетающе действуют на бродильную способность дрожжей, вследствие чего выход спирта резко снижается.

Производство пива

Пиво является слабоалкогольным напитком, приготовляется в основном из ячменного солода и хмеля путем сбраживания сусла пивоваренными дрожжами.

Характеристика рас дрожжей, используемых в пивоварении. Дрожжи, используемые в пивоварении, относятся к видам Saccharomyces cerevisiae и Saccharomyces carlsbergensis.

Дрожжи Saccharomyces cerevisiae относятся к дрожжам верхового брожения и используются редко, в основном для темных и специальных сортов пива.

Дрожжи Saccharomyces carlsbergensis осуществляют низовое брожение пивного сусла – оседая на дно бродильных емкостей. Эти дрожжи хорошо бродят при температуре 5 – 10 °С и широко используются для приготовления стандартного и сортового пива.

Для получения высококачественного пива дрожжи должны обладать следующими свойствами:

· высокой бродильной активностью. Бродильную активность определяют по степени сбраживания сусла (показатель, характеризующий отношение массы сброженного экстракта к массе сухого вещества в начальном сусле).

· флокуляционной способностью – медленно и полно оседать на дно бродильных аппаратов в конце главного брожения. Различия в флокуляционных свойствах лежат в основе разделения дрожжей на хлопьевидные и пылевидные. Хлопьевидные дрожжи в конце главного брожения слипаются в комки – флокулы и при низовом брожении оседают, образуя плотный осадок, а при верховом – поднимаются на поверхность. Пылевидные дрожжи в течение всего процесса остаются во взвешенном состоянии.

· умеренной способностью к размножению. Очень активное размножение дрожжей нежелательно, т.к. при этом расходуются экстрактивные вещества сусла и образуется большое количество побочных продуктов (в среднем в процессе брожения биомасса дрожжей увеличивается в 3 – 4 раза);

· стабильностью морфологических и физиологических свойств; Морфологическое состояниедрожжей отражает их физиологический статус. Наличие большого количества морфологически измененных клеток, особенно в сочетании с пониженными бродильными свойствами, является признаком дегенерации культуры. Большое количество клеток с зернистой протоплазмой, крупными вакуолями и отсутствие почкующихся клеток характеризуют старую культуру. Высокое содержание мертвых клеток(более 10 %) свидетельствует о возможных нарушения технологического процесса: медленное главное брожение, развитие некоторых видов посторонних микроорганизмов. Упитанностьдрожжей определяют по содержанию в клетках гликогена, и его наличие дает представление о способности дрожжей к брожению. В нормально упитанных дрожжах 70 – 75 % клеток содержат гликоген. Меньшее количество клеток с гликогеном в производственных дрожжах свидетельствует о старости дрожжевых клеток или о недостаточном их питании.

Основные стадии технологического процесса.

Разведение чистых культур дрожжей в пивоваренном производстве.

Задачей разведения чистой культуры является увеличение биомассы дрожжей от объема пробирки до объема, вводимого в бродильный аппарат.

Разведение чистой культуры дрожжей ведут на стерильном охмеленном сусле с концентрацией сухих веществ 11 – 13 %, постепенно адаптируя дрожжи к суслу и низкой температуре. Процесс разведения состоит из двух стадий: лабораторной и цеховой.

Приготовление пивного сусла. Солод и другие необходимые по рецептуре зернопродукты измельчают для обеспечения и ускорения физических и биохимических процессов при затирании. Дробленый солод засыпают в заторный аппарат, в который предварительно наливают подогретую воду. Затор нагревают с необходимой скоростью с выдерживанием пауз при определенных температурах. Полнота осахаривания определяется по йодной пробе. Затем затор перекачивают на фильтрование в фильтрационный аппарат. Фильтрованное сусло и промывные воды перекачиваются в сусловарочный аппарат и подвергаются кипячению с хмелем.

Превращение веществ ячменя при солодоращении и веществ солода во время затирания и варки сусла происходит под действием ферментов солода без участия микроорганизмов. Под действием ферментов солода при затирании и варке в сусле повышается содержание сбраживаемых сахаров, белки сусла расщепляются сначала до пептидов, а затем до аминокислот. Биохимический состав сусла оказывает существенное влияние на жизнедеятельность дрожжей и качество готового продукта:

углеводный состав определяется наличием в сусле сбраживаемых и несбраживаемых сахаров. Содержание сбраживаемых сахаров в сусле составляет 70 – 80 % сухих веществ. Это мальтоза (60 – 70 %), мальтотриоза (15 – 20 %), глюкоза (10 – 15 %). Быстрее всего сбраживаются моносахара, медленее мальтоза и хуже всего мальтотриоза.

азотистый состав. Азотистые вещества необходимы клеткам для синтеза компонентов, обеспечивающих их рост и размножение. Наиболее ценными и важными источниками азота являются аминокислоты, пуриновые и пиримидиновые основания. От биосинтеза и распада аминокислот зависит образование ароматических веществ. Образуемые при биосинтезе дрожжей аминокислоты придают пиву бархатистую консистенцию. При неблагоприятных условиях культивирования они могут быть причиной дрожжевого привкуса и помутнения пива.

Сбраживание пивного сусла дрожжами. Осветленное и охлажденное сусло подают в бродильный танк.

Превращение веществ сусла во время брожения является биохимическим процессом, вызываемым микроорганизмами – пивоваренными дрожжами.

Микробиологические процессы в бродящем пивном сусле. Для брожения семенные дрожжи задают из расчета 0,5 л на 100 л сусла. Процесс размножения дрожжевых клеток происходит в пять стадий. В процессе брожения количество дрожжей возрастает в 3 – 4 раза.

Размножение дрожжей начинается раньше, чем вызываемый ими процесс спиртового брожения. Однако размножение происходит быстро и заканчивается в основном за 3 – 4 суток, в то время как брожение происходит в течение почти всей стадии главного брожения (7-10 суток) и продолжается в период дображивания.

Увеличение массы дрожжей при брожении зависит от количества заданных дрожжей, количества экстракта в сусле, содержания растворенного кислорода и температуры. При малом количестве задаточных дрожжей процесс брожения протекает медленнее, но прирост будет большим. Наоборот, большое количество заданных дрожжей обеспечивает большую скорость брожения и меньший прирост биомассы. Для производства наиболее выгоден второй путь, так как при этом сокращаются потери экстракта на образование дрожжей. Кроме того, уменьшения прироста дрожжей при брожении можно достигнуть удалением растворенного кислорода из сусла, так как при наличии его ускоряется размножение дрожжей. В аэробных условиях происходит потребление экстракта, однако спирт не образуется, а в среде накапливаются окисленные продукты, усложняющие и удлиняющие последний период созревания пива.

Скорость размножения дрожжей зависит температуры: При низкой температуре размножение дрожжей замедляется, но вырастают они более крупными с большим запасом резервных веществ и высокой бродильной активностью. При повышении температуры увеличивается потребность дрожжей в питательных веществах, размеры клеток уменьшаются, они не содержат запасных веществ и вырастают более слабыми.

Многие вещества ингибируют размножение дрожжей. Так, при содержании этилового спирта в среде более 1,5 % размножение их замедляется, а при концентрации более 3 % замедляется сбраживание дрожжами сахаров сусла.

Кислоты минеральные и органические также являются ингибиторами: 0,5 % серной кислоты в среде убивает дрожжи за 1 – 2 ч; так же действует уксусная кислота при содержании ее в среде в количестве 1 %. Однако содержание в среде 1 % молочной кислоты дрожжи переносят сравнительно легко.

Дрожжи, потребляя питательные вещества сусла, увеличивают свою биомассу. К концу главного брожения в связи с 3 – 4-х кратным увеличением биомассы клеточная удельная поверхность дрожжей возрастает, что приводит к их слипанию (флокуляции). При слипании клеток образуются хлопья (флокулы), отчего способность дрожжей осветлять пиво называется хлопьеобразованием или флокуляцией . При низовом брожении можно контролировать флокуляцию дрожжей, чтобы получить необходимую степень сбраживания и оставить достаточное количество диспергированных дрожжей для дображивания пива.

Таким образом, конец брожения определяется флокуляцией дрожжей. Главное брожение ведется 5-10 суток.

По окончании главного брожения на дне чана образуется плотный осадок, состоящий из трех слоев. Нижний слой дрожжей образуется старыми слабосбраживающими клетками дрожжей, оседающими быстрее других. Средний слой дрожжей состоит из наиболее активно бродящих дрожжей и крупных хлопьев белка, верхний слой образуют мелкие дрожжевые клетки с пониженной способностью к флокуляции, а также белковый осадок и хмелевые смолы. Для получения семенных дрожжей используют только средний слой.

После главного брожения дрожжи отделяют, промывают холодной водой и используют для производственных целей, считая их первой генерацией. Производственные дрожжи при условии хороших бродильных свойств и отсутствия в них вредных для пива микроорганизмов можно использовать до 10 генераций.

Биохимические процессы в бродящем пивном сусле. Сусло сбраживают до получения определенного количества спирта, соответствующего сорту пива. Большая часть сахаров сусла сбраживается с образованием спирта и углекислого газа. Это – экзотермический процесс, который сопровождается выделением тепла.

В результате брожения в сусле накапливаются продукты спиртового брожения (в % масс): углекислый газ 0,3 – 0,5 и этанол 3 – 6 в зависимости от сорта пива. Большая роль при брожении принадлежит азотистым соединениям.

Азотистый состав сусла при брожении значительно изменяется, так как на построение белков размножающихся дрожжей используется около 40 % аминного и 60 – 80 % аммонийного азота. После прекращения размножения дрожжей количество аминного азота в пиве может незначительно повыситься вследствие выделения из них около 15% ассимилированного азота, а также образования новых аминокислот из белков сусла под действием протеолитических ферментов дрожжей; общее количество белкового азота в пиве при этом уменьшается.

В процессе брожения в пиве образуются побочные продукты. Так, в пиве в начале брожения накапливаются альдегиды, далее под влиянием анаэробных условий они восстанавливаются и количество их уменьшается. Образуются высшие спирты и эфиры, обусловливающие аромат и вкус готового продукта, и органические кислоты, концентрация летучих веществ в пиве очень небольшая – около 0,5 %, но они участвуют в формировании букета – вкуса и аромата готового продукта.

Побочными продуктами брожения являются четырехуглеродные соединения, например диацетил, ацетоин и 2,3-бутиленгликоль. Четырехуглеродные соединения, особенно диацетил, обладают специфическим запахом (в отечественных сортах пива содержится диацетила 0,4 – 1,0 мг/л). При увеличении количества диацетила в пиве появляется медовый привкус, который раньше приписывали только бактериальной инфекции («сарцинное заболевание» пива).

В результате биохимических процессов, протекающих в сусле при брожении, титруемая кислотность увеличивается. Концентрация водородных ионов (рН) в среде также изменяется. Изменение рН и титруемой кислотности приводит к уменьшению растворимости белков и хмелевых веществ. При этом часть белков выпадает в осадок, образуя хлопья, а хмелевые вещества и более легкие частицы белков поднимаются на поверхность, образуя «покрышку», или деку. Изменение содержания в пиве азотистых веществ, фосфатов и органических кислот приводит к изменению буферности среды.

Дображивание и созревание пива. Молодое пиво перекачивается в аппараты дображивания расположенные в специально охлажденном помещении с температурой 2 – 3 о С, где происходит его созревание при заданной температуре и давлении. Длительность дображивания от 6 до 100 суток в зависимости от сорта пива. Процесс дображивания осуществляется пылевыми дрожжами.

Продукт, полученный в конце процесса готов к употреблению и розливу.

Микроорганизмы, инфицирующие сусло и пиво. Микроорганизмы, занесенные в сусло и пиво, вызывают различные «заболевания», выражающиеся в появлении запаха и вкуса, несвойственных пиву, и снижении его качества.

В сусле и пиве встречаются различные микроорганизмы. Часть их попадает из воздуха, с солодовой пылью или с зерном (эпифитная микрофлора). Микробы могут быть занесены и с водой, куда они попадают из почвы с фекалиями. При этом в сусло и пиво могут попадать и патогенные микроорганизмы, вызывающие заболевание человека.

Микроорганизмы, развивающиеся в сусле и пиве, принадлежат к различным группам – к бактериям, плесневым грибам и дрожжам. Они могут быть безвредными, «сопутствующими» или вредителями производства.

Бактерии. По количеству представителей, а также по причиняемому ими ущербу и порче продукции первое место принадлежит бактериям. Попав в производство, они постепенно адаптируются к условиям технологического процесса, видоизменяются и так приспособляются, что борьба с ними представляет известные трудности. Наносимый ими вред выражается не только в ухудшении качества (стойкости) пива, но и в порче его вкуса вплоть до полной непригодности.

Lactobacillus. Молочнокислые бактерии являются потенциальными вредителями, вызывающими помутнение и почти всегда быстрое прокисание пива. Группа объединяет микроорганизмы, которые при сбраживании углеводов образуют главным образом молочную кислоту (гомоферментативные бактерии). Lactobacillus устойчивы к повышенной кислотности и антисептическому действию хмеля.

Lactococcus. В охмеленном сусле и пиве образуют муть, осадок, молочную кислоту или диацетил, иногда ослизнение. Вызывают «сарцинное» заболевание пива , искажающее его вкус и запах. Пиво приобретает неприятный вкус и характерный медовый запах, который вызван диацетилом, образуемым педиококками.

Acetobacterium – кислотоустойчивы и развиваются в широком пределе рН – от 4,5 до 3,2. Так как в качестве источников углерода уксуснокислые бактерии используют спирт и сахара, то на пивоваренном заводе они находят идеальные условия для развития. Могут образовывать в пиве слизь даже при ограниченном количестве воздуха, например в бутылочном пиве. При росте их в пиве образуется полисахаридное желатинообразное вещество декстран. Интенсивное образование в пиве слизи зависит от содержания в нем декстринов. При этом сахара никакого влияния на процесс образования слизи не оказывают.

Flavobacterium используют глюкозу и фруктозу сусла. В инфицированном пиве появляется шелковистая муть, легкий запах сероводорода и яблок.

Escherihia coli. Кишечная палочка является показателем санитарного состояния предприятия.

Zymomonas. Бактерии устойчивы к веществам хмеля и низкой температуре. Они образуют этанол, ацетальдегид и СО 2 . При развитии в пиве бактерии придают ему неприятный посторонний запах и вкус и вызывают помутнение.

Дрожжи. В пивоваренном производстве встречаются такие дрожжи, которые могут испортить вкус и ухудшить качество пива. При развитии диких дрожжей в сусле и пиве могут появиться посторонний запах, сильное помутнение, неприятные горечь и вкус, осадок. Дикие дрожжи оседают хуже, чем культурные пивоваренные дрожжи, поэтому затрудняют осветление пива и коагуляцию дрожжей. Посторонний запах и вкус пиву сообщают высшие спирты, эфиры летучих кислот и горькие вещества, которые образуются дикими дрожжами.

Saccharomyces pastorianus сбраживают углеводы, придают пиву горький привкус, неприятный запах, вызывают помутнение.

Saccharomysec ellipsoideus. С браживают углеводы, вызывают порчу вкуса и помутнение.

Pichia. В пиве образуют летучие кислоты и другие вещества, из-за которых пиво приобретает фруктово-эфирный и лекарственный привкус.

Candida. Развиваются на поверхности сусла и пива в виде белой или сероватой пленки. Придают пиву неприятный вкус и запах.

Candida mycoderma сахара не сбраживает. Обладают большой скоростью размножения и в случае инфицирования способны накапливаться в больших количествах.

Torulopsis . Могут вызывать помутнение пива и ухудшают его вкус. Главная опасность состоит в том, что мертвые клетки служат питательным материалом для других микроорганизмов.

В пивоварении встречаются представители нескольких видов плесневых грибов.

Aspergillus – встречается на поврежденном зерне, на хмеле, в сырых помещениях завода, в емкостях и таре, на остатках пива.

Oidium – молочная плесень, встречается на зеленом солоде, в дробине, на мокрых стенах емкостей, соприкасающихся с затором или суслом.

Rhizopus – черная плесень. Продукты, пораженные плесенью, затягиваются белым паутинообразным мицелием. Rhizopus является опаснейшим вредителем солодовенного цеха и наносит солоду такой же вред, как и Penicillium .

Производство вина

Вино представляет собой продукт спиртового брожения виноградного или плодово-ягодного сока.

Технологический процесс производства вин основывается на биохимических превращениях веществ виноградного или плодово-ягодного сока (сусла) под влиянием дрожжей, обмен веществ которых регулируется ферментным комплексом клетки.

Классификация виноградных вин. Классификацию вин производят с учетом сорта винограда, цвета, технологии производства, содержания спирта и сахара, срока выдержки.

По цвету вина могут быть белыми, розовыми и красными.: Белые виноградные вина получают сбраживанием сусла из светлых сортов винограда. Красные вина получают из красных сортов винограда сбраживанием сусла вместе с кожицей и косточками. В период брожения красящие дубильные вещества из семян и кожицы переходят в сусло, поэтому эти вина имеют красный цвет, терпкий, вяжущий вкус. Розовые вина вырабатывают из белых и красных сортов винограда или получают купажированием (смешиванием) белых и красных вин.

В зависимости от вида сырья виноградные вина выпускают сортовые, получаемые из одного сорта винограда, и купажные, приготовленные из нескольких сортов винограда.

По качеству и сроку выдержки виноградные вина делят на ординарные, ординарные выдержанные, марочные и коллекционные. Ординарные вина выпускают в продажу без выдержки, не ранее чем через 3 месяца со дня переработки винограда. Ординарные выдержанные вина выдерживают более года. Марочные вина – высококачественные, полученные из определенных сортов винограда. Эти вина сохраняют свои свойства вне зависимости от продолжительности выдержки. Продолжительность выдержки – не менее 1,5 лет. Коллекционные вина – марочные вина очень высокого качества, выдержанные не менее 6 лет. После выдержки в бочках их дополнительно выдерживают 3 года в бутылках.

В зависимости от технологии производства, содержания спирта и сахара виноградные вина подразделяют на столовые, крепленые, ароматизированные и насыщенные углекислотой.

Столовые вина. Их получают в результате сбраживания виноградного сока без добавления спирта. Содержание спирта в них – от 9 до 14 %; по содержанию сахара они подразделяются на сухие столовые вина с остаточным содержанием сахара до 1%, столовые полусухие и полусладкие вина, херес. В сухих винах процесс брожения идет до конца, весь сахар сбраживается. Они содержат сахара до 0,3 % и имеют приятно освежающий кисловатый вкус. Столовые полусухие и полусладкие вина получают путем неполного сбраживания сахарного сусла. Процесс брожения приостанавливают охлаждением или оклейкой. После розлива полусухие и полусладкие вина пастеризуют. Полусухие вина содержат 9 – 14 об % спирта и 0,5 – 3 % сахара; полусладкие –9 – 13 об.% спирта, сахара от 3 до 8 %. Они имеют приятный кисло-сладкий вкус. Херес столовый получают выдержкой вина в неполных бочках под дрожжевой пленкой (солерой). Цвет вина золотистый, оно имеет особый вкус и букет с грибным тоном. Херес вырабатывают крепостью не выше 14 %, не сладкий.

Крепленые вина как правило, производят с добавлением спирта. По содержанию спирта и сахара они подразделяются на десертны и крепкие. Десертные вина получаются в результате неполного сбраживания виноградного сусла. Брожение останавливают добавлением спирта в бродящее сусло. Содержание спирта в десертных винах умеренное, 12 – 17 об.%. К группе десертных вин относятся кагор, малага, пино-гри, мускат, сладкое белое, красное, розовое и др., которые готовят из завяленного или заизюмленного и потому очень сладкого винограда. Вина, содержащие выше 20 % сахара, называются ликерными. Чем выше сахаристость вин, тем меньше требуется спирта для обеспечения их биологической устойчивости. Крепкие вина отличаются от десертных большим содержанием спирта – от 17 до 20 об.% и меньшим количеством сахара. Сахаристость крепких вин невысокая – до 14 %. К этой категории относятся сухие и полусладкие мадеры, портвейны, сухие, полусухие и полусладкие хересы.

Отдельной группой стоят ароматизированные вина , к которым принадле-жат вермуты. Вермут – виноградное вино, настоянное на различных пахучих материалах растительного происхождения. В состав их входит полынь, откуда и произошло название (нем. Vermuth – полынь), ваниль, корица, хинная корка, кардамон, золототысячник, чебрец, тысячелистник, мята, березовые почки, липовый цвет, зубровка и др.

Особая группа – вина, насыщенные углекислотой : игристые, или шампанские, а также шипучие вина. Во Франции название «шампанское», согласно законодательству, имеют право носить игристые вина, произведенные только в провинции Шампань из местного винограда и только бутылочным способом. Изначально шампанское вино «vino secco» было сладким вином, приготовленным из подсохших при созревании ягод.

Шампанизация вина производится бутылочным и резервуарным способами. При первом способе бутылки выдерживают в течение 3 лет. При этом бутылки держат горлом вниз, в связи с чем осадок образуется на пробке, его удаляют вместе с пробкой после замораживания. Бутылочное шампанское имеет на этикетке обозначение «выдержанное».

При резервуарном способе шампанизация вина происходит в больших емкостях, после чего его разливают в бутылки, где брожение продолжается еще один-два года. Таким способом делают шампанское в Абрау-Дюрсо, на Ростовском, Московском и др. заводах.

Перегонкой виноградного вина получают коньяки. Родина коньяка – французский департамент Шаранта (центр – г. Коньяк), поэтому настоящим коньяком следует называть лишь тот, что изготовлен в Шаранте. Это крепкий спиртовой напиток из коньячного спирта, получаемый из белых сухих виноградных вин путем перегонки. Коньячный спирт крепостью 65 – 70 % выдерживают в дубовых бочках или цистернах, загруженных дубовой клепкой. В зависимости от выдержки выпускают коньяки ординарные (возраст 3 – 5 лет) и марочные. Годы выдержки ординарных коньяков обозначают звездочками.

Характеристика рас дрожжей, используемых в виноделии. Главная роль при брожении виноградного и плодово – ягодного сусла принадлежит дрожжам. Под влиянием дрожжей всегда имеющихся на поверхности спелых ягод и плодов (эпифитная микрофлора) брожение сока может возникнуть спонтанно (самопроизвольно).

Виноградный сок является прекрасной питательной средой. Попадание в сусло диких дрожжей и дрожжеподобных организмов может изменить вкус и вызвать порчу готового продукта. Для подавления нежелательной микрофлоры и с целью получения готового продукта в винопроизводстве используют в качестве основного возбудителя брожения культурные дрожжи.

Винные дрожжи принадлежат к семейству Saccharomycetaceae, видам Saccharomyces vini и Saccharomyces oviformis . Строение клетки винных дрожжей не отличается от строения клеток других сахаромицетов. Форма и размеры клеток у S. oviformis и. S. vini одинаковы.

Дрожжи Saccharomyces vini сбраживают глюкозу, фруктозу, маннозу, мальтозу, сахарозу, галактозу и третью часть раффинозы; не сбраживают лактозу, пентозы, декстрин и инулин.

Saccharomyces oviformis – также хорошо размножается в виноградном соке и дает около 18 % спирта. На поверхности сухого виноградного вина они образуют пленку. Применяются в виноделии для производства хереса. Дрожжи могут сбраживать глюкозу, фруктозу, маннозу, сахарозу, мальтозу и треть

Похожие публикации